首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stochastic adaptive dynamic surface control is presented for a class of uncertain multiple‐input–multiple‐output (MIMO) nonlinear systems with unmodeled dynamics and full state constraints in this paper. The controller is constructed by combining the dynamic surface control with radial basis function neural networks for the MIMO stochastic nonlinear systems. The nonlinear mapping is applied to guarantee the state constraints being not violated. The unmodeled dynamics is disposed through introducing an available dynamic signal. It is proved that all signals in the closed‐loop system are bounded in probability and the error signals are semiglobally uniformly ultimately bounded in mean square or the sense of four‐moment and the state constraints are confirmed in probability. Simulation results are offered to further illustrate the effectiveness of the control scheme.  相似文献   

2.
In this paper, an adaptive neural output feedback control scheme is investigated for a class of stochastic nonlinear systems with unmeasured states and four kinds of uncertainties including uncertain nonlinear function, dynamic disturbance, input unmodeled dynamics, and stochastic inverse dynamics. The unmeasured states are estimated by K‐filters, and stochastic inverse dynamics is dealt with by constructing a changing supply function. The considered input unmodeled dynamic subsystem possesses nonlinear feature, and a dynamic normalization signal is introduced to counteract the unstable effect produced by the input unmodeled dynamics. Combining dynamic surface control technique with stochastic input‐to‐state stability, small‐gain condition, and Chebyshev's inequality, the designed robust adaptive controller can guarantee that all the signals in the closed‐loop system are bounded in probability, and the error signals are semi‐globally uniformly ultimately bounded in mean square or the sense of four‐moment. Simulation results are provided to verify the effectiveness of the proposed approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, an observer-based adaptive neural output-feedback control scheme is developed for a class of nonlinear stochastic nonstrict-feedback systems with input saturation in finite-time interval. The mean value theorem and the property of the smooth function are applied to cope with the difficulties caused by the existence of input saturation. According to the universal approximation capability of the radial basis function neural network, it will be utilized to compensate the unknown nonlinear functions. Based on the state observer, the finite-time Lyapunov stability theorem, we propose an adaptive neural output-feedback control scheme for nonlinear stochastic systems in nonstrict-feedback form. The developed controller guarantees that the system output signal can track the given reference signal trajectory, and all closed-loop signals are semi-globally finite-time stability in probability. The observer errors and the tracking error can converge to a small neighborhood of the origin. Finally, simulation results demonstrate the effectiveness of the developed control scheme.  相似文献   

4.
This article is concerned about an adaptive dynamic surface control (DSC) of output constrained stochastic nonlinear systems with unknown control directions and unmodeled dynamics. Nonlinear mapping-based backstepping control design is presented for stochastic nonlinear systems with output constraint. The explosion of complexity exists in tradition backstepping method is avoided by using the DSC technique. The radial basis function neural networks are employed to deal with unknown nonlinear functions. Nussbaum gain technique is employed to handle the unknown control directions. And a dynamic signal is employed to dominate the unmodeled dynamics. The adaptive controller is designed can ensure that the tracking error converges on a small region of the origin. And all signals of the closed-loop systems are semiglobal uniformly ultimately bounded. Finally, the results of the simulation cases are provided to show the effectivity of the designed controller scheme.  相似文献   

5.
In this paper, a novel direct adaptive neural control approach is presented for a class of single‐input and single‐output strict‐feedback nonlinear systems with nonlinear uncertainties, unmodeled dynamics, and dynamic disturbances. Radial basis function neural networks are used to approximate the unknown and desired control signals, and a direct adaptive neural controller is constructed by combining the backstepping technique and the property of hyperbolic tangent function. It is shown that the proposed control scheme can guarantee that all signals in the closed‐loop system are semi‐globally uniformly ultimately bounded in mean square. The main advantage of this paper is that a novel adaptive neural control scheme with only one adaptive law is developed for uncertain strict‐feedback nonlinear systems with unmodeled dynamics. Simulation results are provided to illustrate the effectiveness of the proposed scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we consider the problem of decentralized adaptive output‐feedback regulation for stochastic nonlinear interconnected systems with unknown virtual control coefficients, stochastic unmodeled dynamic interactions. The main contributions of the paper are as follows: (1) This paper presents the first result on decentralized output‐feedback control for stochastic nonlinear systems with unknown virtual control coefficients; (2) For stochastic interconnected systems with stochastic integral input‐to‐state stable unmodeled dynamics, and more general nonlinear uncertain interconnections which depend upon the outputs of subsystems and the stochastic unmodeled dynamics, a decentralized output‐feedback controller is designed to drive the outputs and states to the origin almost surely. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This paper focuses on the problem of adaptive control for a class of pure-feedback nonlinear systems with full-state time-varying constraints and unmodeled dynamics. By introducing a one-to-one nonlinear mapping, the constrained pure-feedback nonlinear system with state and input unmodeled dynamics is transformed into unconstrained pure-feedback system. The controller design based on the transformed novel system is proposed by using a modified dynamic surface control method. Dynamic signal and normalization signal are designed to handle dynamical uncertain terms and input unmodeled dynamics, respectively. By adding nonnegative normalization signal into the whole Lyapunov function and using the introducing compact set in the stability analysis, all signals in the whole system are proved to be semiglobally uniformly ultimately bounded, and all states can obey the time-varying constraint conditions. A numerical example is provided to demonstrate the effectiveness of the proposed approach.  相似文献   

8.
In this paper, the problem of adaptive neural control is discussed for a class of strict‐feedback time‐varying delays nonlinear systems with full‐state constraints and unmodeled dynamics, as well as distributed time‐varying delays. The considered nonlinear system with full‐state constraints is transformed into a nonlinear system without state constraints by introducing a one‐to‐one asymmetric nonlinear mapping. Based on modified backstepping design and using radial basis function neural networks to approximate the unknown smooth nonlinear function and using a dynamic signal to handle dynamic uncertainties, a novel adaptive backstepping control is developed for the transformed system without state constraints. The uncertain terms produced by state time delays and distributed time delays are compensated for by constructing appropriate Lyapunov‐Krasovskii functionals. All signals in the closed‐loop system are proved to be semiglobally uniformly ultimately bounded. A numerical example is provided to illustrate the effectiveness of the proposed design scheme.  相似文献   

9.
10.
This paper investigates an adaptive fuzzy control method for accommodating actuator faults in a class of uncertain stochastic nonlinear systems with both immeasurable states and unmodeled dynamics. The considered faults are modeled as both loss of effectiveness and lock‐in‐place. To deal with the immeasurable states, a novel state observer containing the actuator faults is designed. Combining with the backstepping technique and stochastic small‐gain theorem, an adaptive fuzzy output feedback control method is developed. The presented design scheme can guarantee that the closed‐loop system is input‐to‐state practically stable in probability. Finally, a simulation example is shown to verify the effectiveness of the proposed control method.  相似文献   

11.
This article studies the adaptive fuzzy finite-time quantized control problem of stochastic nonlinear nonstrict-feedback systems with full state constraints. During the control design process, fuzzy logic systems are used to identify the unknown nonlinear functions, integral barrier Lyapunov functions are employed to solve the state constrained problem. In the frame of backstepping design, an adaptive fuzzy finite-time quantized control scheme is developed. Based on the stochastic finite-time Lyapunov stability theory, it can be guaranteed that the closed-loop system is semiglobal finite-time stable in probability, and the tracking errors converge to a small neighborhood of the origin in a finite time. Finally, two simulation examples are provided to testify the effectiveness of the developed control scheme.  相似文献   

12.
This paper proposes an adaptive neural‐network control design for a class of output‐feedback nonlinear systems with input delay and unmodeled dynamics under the condition of an output constraint. A coordinate transformation with an input integral term and a Nussbaum function are combined to solve the problem of the input possessing both time delay and unknown control gain. By utilizing a barrier Lyapunov function and designing tuning functions, the adjustment of multiparameters is handled with a single adaptive law. The uncertainty of the system is approximated by dynamic signal and radial basis function neural networks (RBFNNs). Based on Lyapunov stability theory, an adaptive tracking control scheme is developed to guarantee all the signals of the closed‐loop systems are semiglobally uniformly ultimately bounded, and the output constraint is not violated.  相似文献   

13.
A general class of uncertain nonlinear systems with dynamic input nonlinearities is considered. The system structure includes a core nominal subsystem of triangular structure with additive uncertain nonlinear functions, coupled uncertain nonlinear appended dynamics, and uncertain nonlinear input unmodeled dynamics. The control design is based on dual controller/observer dynamic high‐gain scaling with an additional dynamic scaling based on a singular perturbation‐like redesign to address the non‐affine and uncertain nature of the input appearance in the system dynamics. The proposed approach yields a constructive global robust adaptive output‐feedback control design that is robust to the dynamic input uncertainties and to uncertain nonlinear functions allowed throughout the system structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
In this article, the adaptive finite-time fault-tolerant control problem is considered for a class of switched nonlinear systems in nonstrict-feedback form with actuator fault. The problem of finite-time fault-tolerant control is solved by introducing a finite-time performance function. Meanwhile, the completely unknown nonlinear functions exist in the switched system are identified by the neural networks. Based on the common Lyapunov function method with adaptive backstepping technique, the finite-time fault-tolerant controller is designed. The proposed control strategy can guarantee that the tracking error converges to a prescribed zone at a finite-time and all system variables remain semiglobally practical finite-time stable. Numerical examples are offered to verify the feasibility of the theoretical result.  相似文献   

15.
针对一类由线性中性稳定的外系统驱动的具有未建模动态和外界扰动的非线性不确定系统的输出调节问题,结合动态面控制法和内模原理提出一种具有动态面控制的设计方法.根据非线性输出调节问题可解的必要条件,运用状态变换和标准内模将输出调节问题转化为镇定问题.运用动态面控制法将一阶滤波器引入反步设计中,避免了反步设计中所存在的"膨胀项...  相似文献   

16.
Many physical systems such as biochemical processes and machines with friction are of nonlinearly parameterized systems with uncertainties. How to control such systems effectively is one of the most challenging problems. This paper presents a robust adaptive controller for a significant class of nonlinearly parameterized systems. The controller can be used in cases where there exist parameter and nonlinear uncertainties, unmodeled dynamics and unknown bounded disturbances. The design of the controller is based on the control Lyapunov function method. A dynamic signal is introduced and adaptive nonlinear damping terms are used to restrain the effects of unmodeled dynamics, nonlinear uncertainties and unknown bounded disturbances. The backstepping procedure is employed to overcome the complexity in the design. With the proposed method, the estimation of the unknown parameters of the system is not required and there is only one adaptive parameter no matter how high the order of the system is and how many unknown parameters there are. It is proved theoretically that the proposed robust adaptive control scheme guarantees the stability of nonlinearly parameterized system. Furthermore, all the states approach the equilibrium in arbitrary precision by choosing some design constants appropriately. Simulation results illustrate the effectiveness of the proposed robust adaptive controller. __________ Translated from Journal of Sichuan University (Engineering Science Edition), 2005, 37(5): 148–153 (in Chinese)  相似文献   

17.
This article investigates an adaptive neural network (NN) output-feedback optimal control design problem for active suspension systems (ASSs) with stochastic disturbance. The ASSs under consideration contain the characteristics of spring nonlinear dynamics, unmeasured states, and state constraints. The NNs are developed to approximate the unknown nonlinear functions. Meanwhile, observer-based output feedback control design method is proposed based on the adaptive backstepping technique. Furthermore, the stability of the closed-loop system is demonstrated by constructing the barrier Lyapunov function, thus ensuring that the full-state constraints are not exceeded. In particular, the simulation validations are given for the cases of bump, C-class, and D-class road displacements inputs. Finally, the simulation results verify the effectiveness of the studied control strategy.  相似文献   

18.
This paper presents an adaptive fuzzy control scheme for a class of nonstrict-feedback nonlinear systems with dead zone outputs and prescribed performance. By utilizing the monotonically increasing property of system bounding functions and the Nussbaum function, the design difficulties caused by the nonstrict-feedback structure and dead zone output are overcome. Combining backstepping technique with prescribed performance algorithm, a feasible adaptive fuzzy controller is designed to guarantee the boundedness of all signals of the closed-loop system and the prescribed tracking performance of the system. Finally, simulation results are depicted to illustrate the effectiveness of the proposed control approach.  相似文献   

19.
Focusing on solving the control problem of the multimachine excitation systems with static var compensator (SVC), this paper proposes a decentralized neural adaptive dynamic surface control (DNADSC) scheme, where the radial basis function neural networks are used to approximate the unknown nonlinear dynamics of the subsystems and compensate the unknown nonlinear interactions. The main advantages of the proposed DNADSC scheme are summarized as follows: (1) the strong nonlinearities and complexities are mitigated when the SVC equipment are introduced to the multimachine excitation systems and the explosion of complexity problem of the backstepping method is overcome by combining the dynamic surface control method with neural networks (NNs) approximators; 2) the tracking error of the power angle can be kept in the prespecified performance curve by introducing the error transformed function; (3) instead of estimating the weighted vector itself, the norm of the weighted vector of the NNs are estimated, leading to the reduction of the computational burden. It is proved that all the signals in the multimachine excitation system with SVC are semiglobally uniformly ultimately bounded.  相似文献   

20.
An alternative adaptive control with prescribed performance is proposed to address the output tracking of nonlinear systems with a nonlinear dead zone input. An appropriate function that characterizes the convergence rate, maximum overshoot, and steady‐state error is adopted and incorporated into an output error transformation, and thus the stabilization of the transformed system is sufficient to achieve original tracking control with prescribed performance. The nonlinear dead zone is represented as a time‐varying system and Nussbaum‐type functions are utilized to deal with the unknown control gain dynamics. A novel high‐order neural network with a scalar adaptive weight is developed to approximate unknown nonlinearities, thus the computational costs can be diminished dramatically. Some restrictive assumptions on the system dynamics and the dead‐zone are circumvented. Simulations are included to validate the effectiveness of the proposed scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号