首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The performance of an ultra-compact biofilm reactor (UCBR) treating domestic wastewater (DWW) collected from a local water reclamation plant; and gradually shifting to a mono-type carbon source synthetic wastewater (SWW) combined with DDW (CWW) and finally SWW; was investigated in this study. The total COD concentrations of influent DWW and CWW/SWW were 413.6 ± 80.8 mg/L and 454.9 ± 51.3 mg/L, respectively. The UCBR was able to achieve average total COD removal efficiencies of 70 ± 10% and 80 ± 4% for DWW and SWW respectively. The total COD concentrations of the effluent of DWW and CWW/SWW were 122.5 ± 44.4 mg/L and 89.7 ± 10.3 mg/L, respectively. These observations suggested that heterotrophs in the UCBR system were able to better assimilate and remove carbon of mono-type SWW compared to diverse carbon sources such as DWW; although the influent soluble COD concentrations of the SWW were higher than those of the DWW. However, the effluent NH(4)(+)-N concentrations for both types of wastewater were rather similar, <3.0 mg/L; although the influent NH(4)(+)-N concentrations of the DWW were 1.5 times those of the SWW.  相似文献   

2.
曝气生物滤池去除有机物及氨氮的影响因素分析   总被引:4,自引:0,他引:4  
采用以陶粒为填料的曝气生物滤池(BAF)处理生活污水,研究气水比、水力负荷、进水COD和NH3-N负荷对BAF去除COD及NH3-N的影响,分析COD及NH3-N沿滤柱的变化规律。结果表明:当试验进水COD及NH3-N质量浓度分别为300~370mg/L和20~40mg/L时,最佳气水比为4∶1~5∶1,最佳水力负荷为1.0~2.0 m3/(m2.h)。当进水COD负荷为1.69~6.47 kg/(m3.d)时,COD去除率与进水COD负荷成正相关。BAF的硝化性能与进水NH3-N和COD负荷成负相关。  相似文献   

3.
Concentrated animals feeding operations (CAFOs) often pose a negative environmental impact due to the uncontrolled spreading of manure into soils that ends up in the release of organic matter and nutrients into water bodies. Conventional aerobic methods treating CAFOs wastewater require intensive oxygenation, which significantly increases the operational costs. The alternative proposed in this research is the application of micro-algae based systems by taking advantage of the cost-effective in situ oxygenation via photosynthesis. A 4.9 L enclosed tubular biofilm photo-bioreactor was inoculated with an algal-bacterial consortium formed by the micro-algae Chlorella sorokiniana and a mixed bacterial culture from an activated sludge process. C. sorokiniana delivers the O(2) necessary to accomplish both organic matter and ammonium oxidation. The reactor was fed with diluted swine wastewater containing 180, 15 and 2,000 mg/L of NH(4) (+)-N, soluble P and total COD, respectively. The photo-bioreactor exhibited good and sustained nutrient removal efficiencies (up to 99% and 86% for NH(4) (+) and PO(4) (3-), respectively) while total COD was removed up to 75% when the biofilm was properly established. Liquid superficial velocities up to 0.4 m/s (achieved by culture broth recirculation) hindered the formation of a stable biofilm, while operation at velocities lower than 0.1 m/s supported stable process performance. The high shear stress imposed by the centrifugal recirculation pump disintegrated the large aggregates detached from the biofilm, which resulted in a poor settling performance and therefore poor COD removal efficiencies. Enclosed biofilm photo-bioreactors therefore offer a potentially more economical alternative to conventional tertiary treatments process.  相似文献   

4.
The objective of this study was to develop an integrated nitrogen treatment system using autotrophic organisms. A treatment system consists of an aerobic hollow-fiber membrane biofilm reactor (HfMBR) and anaerobic HfMBR. In the aerobic HfMBR, a mixture gas of air and O2 was supplied through the fibers for nitrification. Denitrification occurred in the anaerobic HfMBR using H2 as the electron donor. The treatment system was continuously operated for 190 days. NH4-N removal efficiencies ranging from 95% to 97% were achieved at NH4-N concentrations of influent ranging from 50 to 100 mg N/L. When glucose was added to the influent, the simultaneous nitrification and denitrification occurred in the aerobic HfMBR, and nitrogen removal rates were changed according to the COD/NH4-N ratio of influent. In the anaerobic HfMBR, autotrophic denitrification using H2 occurred and the removal rates achieved in this study were 23-58 mg N/m2 d. In this study, the achieved removal efficiency was lower than other study findings; however, the result suggested that this hybrid HfMBR system can be used effectively for nitrogen removal in oligotrophic water.  相似文献   

5.
The use of a membrane bioreactor (MBR) for removal of organic substances and nutrients from slaughterhouse plant wastewater was investigated. The chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations of slaughterhouse wastewater were found to be approximately 571 mg O2/L, 102.5 mg/L, and 16.25 mg PO4-P/L, respectively. A submerged type membrane was used in the bioreactor. The removal efficiencies for COD, total organic carbon (TOC), TP and TN were found to be 97, 96, 65, 44% respectively. The COD value of wastewater was decreased to 16 mg/L (COD discharge standard for slaughterhouse plant wastewaters is 160 mg/L). TOC was decreased to 9 mg/L (TOC discharge standard for slaughterhouse plant wastewaters is 20 mg/L). Ammonium, and nitrate nitrogen concentrations of treated effluent were 0.100 mg NH4-N/L, and 80.521 mg NO3-N/L, respectively. Slaughterhouse wastewater was successfully treated with the MBR process.  相似文献   

6.
改进型移动床生物膜反应器处理有机废水的试验   总被引:1,自引:0,他引:1       下载免费PDF全文
改进型移动床生物膜反应器(CMCBR)是在普通移动床生物膜反应器中引入导流板,使填料在全池循环移动,消除了普通移动床生物膜反应器的死角。在CMCBR处理模拟生活污水的试验中,研究了有机物的去除效果,考察了容积负荷、水力停留时间、冲击负荷等参数对处理效果的影响。试验发现,在填料填充比例为50%(体积比),进水COD质量浓度为320~550mg/L,水力停留时间为3 h的条件下,出水COD质量浓度小于100 mg/L,达到国家污水综合排放标准的一级标准。反应器具有较强的抗冲击负荷能力,出水水质稳定。  相似文献   

7.
One of the major challenges of anaerobic technology is its applicability for low strength wastewaters, such as sewage. The lab-scale design and performance of a novel Gradual Concentric Chambers (GCC) reactor treating low (165+/-24 mg COD/L) and medium strength (550 mg COD/L) domestic wastewaters were studied. Experimental data were collected to evaluate the influence of chemical oxygen demand (COD) concentrations in the influent and the hydraulic retention time (HRT) on the performance of the GCC reactor. Two reactors (R1 and R2), integrating anaerobic and aerobic processes, were studied at ambient (26 degrees C) and mesophilic (35 degrees C) temperature, respectively. The highest COD removal efficiency (94%) was obtained when treating medium strength wastewater at an organic loading rate (OLR) of 1.9 g COD/L.d (HRT = 4 h). The COD levels in the final effluent were around 36 mg/L. For the low strength domestic wastewater, a highest removal efficiency of 85% was observed, producing a final effluent with 22 mg COD/L. Changes in the nutrient concentration levels were followed for both reactors.  相似文献   

8.
Pumped flow biofilm reactors (PFBR) for treating municipal wastewater   总被引:1,自引:0,他引:1  
A novel laboratory bench-scale sequencing batch biofilm reactor (SBBR) system was developed for the treatment of synthetic domestic strength wastewater, comprising two side-by-side 18 l reactor tanks, each containing a plastic biofilm media module. Aerobic and anoxic conditions in the biofilms were effected by intermittent alternate pumping of wastewater between the two reactors. With a media surface area loading rate of 4.2 g chemical oxygen demand (COD)/m2.d, the average influent COD, total nitrogen (TN) and ammonium-nitrogen (NH4-N) concentrations of 1021 mg/l, 97 mg/l and 54 mg/l, respectively, reduced to average effluent concentrations of 72 mg COD/l, 17.8 mg TN/l, and 5.5 mg NH4-N /l. Using a similar alternating biofilm exposure arrangement, a 16 person equivalent pilot (PE) plant was constructed at a local village treatment works to remove organic carbon from highly variable settled municipal wastewater and comprised two reactors, one positioned above the other, each containing a module of cross-flow plastic media with a surface area of 100 m2. Two different pumping sequences (PS) in the aerobic phase were examined where the average influent COD concentrations were 220 and 237 mg/l for PS1 and PS2, respectively, and the final average effluent COD was consistently less than 125 mg/l--the European Urban Wastewater Treatment Directive limit--with the best performance occurring in PS1. Nitrification was evident during both PS1 and PS2 studies. A 300 PE package treatment plant was designed based on the bench-scale and pilot-scale studies, located at a local wastewater treatment works and treated municipal influent with average COD, suspended solids (SS) and TN concentrations of 295, 183 and 15 mg/l, respectively resulting in average effluent concentrations of 67 mg COD/l, 17 mg SS/l and 9 mg TN/l. The SBBR systems performed well, and were simple to construct and operate.  相似文献   

9.
This study was to investigate domestic treatment efficiency of a subsurface wastewater infiltration (SWI) system over time. The performances of a young SWI system (in Shenyang University, China, fully operated for one year) and a mature SWI system (in Shenyang Normal University, China, fully operated for seven years) under the same operation mode were contrasted through field-scale experiments for one year. The performance assessment for these systems is based on physical and chemical parameters collected. The removal efficiencies within the young system were relatively high if compared with the mature one: for biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), ammonia nitrogen (NH(3)-N) and total phosphorus (TP) were 95.0, 89.1, 98.1, 87.6 and 98.4%, respectively. However, the removal efficiencies decreased over time. The mean removal efficiencies for the mature SWI system were as follows: BOD (89.6%), COD (87.2%), SS (82.6%), NH(3)-N (69.1%) and TP (74.4%). The results indicate that the mature SWI system successfully removed traditional pollutants such as BOD from domestic wastewater. However, the nutrient reduction efficiencies (including NH(3)-N and TP) decreased after seven years of operation of the mature SWI system. Meanwhile, the SWI system did not decrease the receiving surface water quality.  相似文献   

10.
The rotating biological contactor (RBC) system was operationally modified with a sequencing batch reactor to achieve biological phosphorus removal from a weak domestic sewage along with nitrogen removal. This study utilized three RBC units, of which two units were the main units to remove phosphorus and NH4N and the third RBC unit was used as the storage of wastewater for its minimal effect to the PAO activities in the anaerobic stage during the operation. It was noticed that the biofilm thickness in RBC must be controlled to be less than 1.8 mm in order to achieve more than 70% of P removal with about 60% of N removal. With a settled sewage representing 200 mg/L of COD and 5 mg/L of P, the predicted P content in biofilm was more than 3% and the effluent P concentration was about 1 mg/L. The %P content in biofilm decreased with an increase of influent COD/TP ratios. The COD requirement for anaerobic P release was similar to reported values for the suspended growth system, however, the overall requirement increased with thicker biofilm.  相似文献   

11.
Abstract Two hybrid fluidised bed reactors filled with sepiolite and granular activated carbon (GAC) were operated with short cycled aeration for removing organic matter, total nitrogen and phosphorous, respectively. Both reactors were continuously operated with synthetic and/or industrial wastewater containing 350-500 mg COD/L, 110-130 mg NKT/L, 90-100 mg NH3-N/L and 12-15 mg P/L for 8 months. The reactor filled with sepiolite, treating only synthetic wastewater, removed COD, ammonia, total nitrogen and phosphorous up to 88, 91, 55 and 80% with a hydraulic retention time (HRT) of 10 h, respectively. These efficiencies correspond to removal rates of 0.95 kgCODm(-3)d(-1) and 0.16 kg total N m(-3)d(-1).The reactor filled with GAC was operated for 4 months with synthetic wastewater and 4 months with industrial wastewater, removing 98% of COD, 96% of ammonia, and 66% of total nitrogen, with an HRT of 13.6 h. No significant phosphorous removing activity was observed in this reactor. Microbial communities growing with both reactors were followed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The microbial fingerprints, i.e. DGGE profiles, indicated that biological communities in both reactors were stable along the operational period even when the operating conditions were changed.  相似文献   

12.
土壤过滤系统处理农村生活污水的 试验研究   总被引:1,自引:0,他引:1  
采用一种土壤过滤系统处理农村生活污水,考察了该工艺对CODCr、BOD5、NH3-N、全氮(TN)和全磷(TP)的去除效果。实验结果表明,当水力负荷约为0.05 m3/(m2·d), 水力停留时间为3 d时。该土壤过滤系统对CODCr、BOD5、NH3-N、全氮(TN)和全磷(TP)的去除效果较好,平均去除率分别达到84.6%、83.3%、64.3%、59.8%和70%。出水CODCr约为18.3~42.1 mg/L,BOD5约为8.9~17.3 mg/L,NH3-N约为11.2~17.7 mg/L,TN约为21.2~31.3 mg/L,TP小于2.0 mg/L,出水水质优于农田灌溉水质标准(GB 5084—2005)。气温变化和进水污染物浓度对处理效果影响明显。总体上来讲,温度大于22 ℃时,进水污染物浓度越低处理效果越好。  相似文献   

13.
In this study, four similar bench-scale submerged Anoxic/Oxic Membrane Bioreactors (MBR) were used simultaneously to investigate the effects of solids retention time (SRT) on organic and nitrogen removal in MBR for treating domestic wastewater. COD removal efficiencies in all reactors were consistently above 94% under steady state conditions. Complete conversion of NH(4+)-N to NO(3-)-N was readily achieved over a feed NH(4+)-N concentration range of 30 to 50 mg/L. It was also observed that SRT did not significantly affect the nitrification in the MBR systems investigated. The average denitrification efficiencies for the 3, 5, 10 and 20 days SRT operations were 43.9, 32.6, 47.5 and 66.5%, respectively. In general, the average effluent nitrogen concentrations, which were mainly nitrate, were about 22.2, 27.6, 21.7 and 13.9 mg/L for the 3, 5, 10 and 20 days SRT systems, respectively. The rate of membrane fouling at 3 days SRT operation was more rapid than that observed at 5 days SRT. No fouling was noted in the 10 days and 20 days SRT systems during the entire period of study.  相似文献   

14.
研究厌氧附着膜膨胀床反应器中温处理乳品废水的运行工况。讨论在不同水力停留时间、容积负荷、pH值条件下对COD去除率的影响,并对进出水总氮及氨氮的变化情况进行研究。试验表明:厌氧附着膜膨胀床反应器处理乳品废水,在水力停留时间为8h、中温35℃条件下,COD去处率达到80%以上,对总氮的去除约为8%,出水有机氮的氨化率达70%以上,ρ(BOD)/ρ(COD)由进水的0 5提高到0 8以上。  相似文献   

15.
A four stage pilot plant of step-feed biological nutrient removal (BNR) was employed to investigate reactor performance and process stability. The results obtained showed that step-feed BNR is efficient and cost-effective for nitrogen and carbonaceous removal from municipal wastewater. The total average removal efficiencies of COD, NH3-N, TN and TP could reach as high as 89.5, 97.8, 73 and 75%, respectively, with 50% of return activated sludge (RAS), 9 h of hydraulic retention time (HRT) and 20 d of sludge retention time (SRT). Step-feed BNR is an alternative and effective technology of nutrient removal for municipal wastewater treatment.  相似文献   

16.
Nitrogen removal from a piggery wastewater was investigated in a post-denitrification modified Lüdzack Ettinger (PDMLE) process. Overall hydraulic retention time (HRT) of the PDMLE, consisting of contact/separator (C/S), nitrification, denitrification and re-aerobic bioreactor was 10 days. 60% of the influent SCOD was separated in the C/S by contacting the return sludge with the synthetic wastewater, however, only 10% of the influent SCOD was separated from the piggery wastewater. Biosorption capacities of the synthetic wastewater and piggery wastewater were 800 and 150 mg/g-MLSS, respectively. In spite of the high organic and nitrogen load, nitrification efficiency was above 95%, and nitrification rate was about 180 mg-NH4+-N/L x day. The removed delta COD/delta nitrate ratios in the denitrification tank were 4.0 and 11.5 g-SCOD/g-nitrate, while denitrification rates were 8.4 and 2.6 mg-nitrate/day for synthetic and piggery wastewater, respectively. In the proposed PDMLE process, both bio-sorbed and bypassed organic matter could be successfully used for nitrate reduction as carbon sources and the final TN removal efficiency was as high as 95%.  相似文献   

17.
Subsurface flow wetlands contain gravel or sand substrates through which the wastewater flows vertically or horizontally. The aims of this study were, firstly, to quantify biofilm development associated with different size gravel in sections of a subsurface flow wetland with and without plants, and secondly, to conduct laboratory experiments to examine the role of biofilms in nutrient removal. Techniques to quantify biofilm included: bacterial cell counts, EPS and total protein extraction. Based on comparative gravel sample volume, only EPS was greater on the smaller 5 mm gravel particles. There was no significant difference between biofilm growth in sections with and without plants. Two vertical flow laboratory-scale reactors, one containing fresh wetland gravel, the other containing autoclaved gravel, were constructed to determine nutrient transformations. The autoclaved gravel in the "sterile" reactor rapidly became colonised with biofilm. Both reactors were dosed with two types of influent. Initially the influent contained 7.25 mg/L NO3-N and 0.3 mg/L NH4-N; the biofilm reactor removed most of the ammonium and nitrite but nitrate concentrations were only reduced by 20%. In the "sterile" reactor there was negligible removal of ammonium and nitrite indicating little nitrification, however nitrate was reduced by 72%, possibly due to assimilatory nitrate reduction associated with new biofilm development. When the influent contained 3 mg/L NO3-N and 16 mg/L NH4-N almost 100% removal and transformation of NH4-N occurred in both reactors providing an effluent high in NO3-N. Organic P was reduced but inorganic soluble P increased possibly due to mineralisation.  相似文献   

18.
In this investigation, the performance of Upflow Anaerobic Sludge Blanket (UASB) reactors treating municipal wastewater was evaluated on the basis of: (i) COD removal efficiency, (ii) effluent variability, and (iii) pH stability. The experiments were performed using 8 pilot-scale UASB reactors (120 L) from which some of them were operated with different influent COD (CODInf ranging from 92 to 816 mg/L) and some at different hydraulic retention time (HRT ranging from 1 to 6 h). The results show that decreasing the CODInf, or lowering the HRT, leads to decreased efficiencies and increased effluent variability. During this experiment, the reactors could treat efficiently sewage with concentration as low as 200 mg COD/L. They could also be operated satisfactorily at an HRT as low as 2 hours, without problems of operational stability. The maximum COD removal efficiency can be achieved at CODInf exceeding 300 mg/L and HRT of 6h.  相似文献   

19.
In sulfate-reducing reactors, it has been reported that the sulfate removal efficiency increases when the COD/SO4(2-) ratio is increased. The start-up of a down-flow fluidized bed reactor constitutes an important step to establish a microbial community in the biofilm able to survive under the operational bioreactor conditions in order to achieve effective removal of both sulfate and organic matter. In this work the influence of COD/SO4(2-) ratio and HRT in the development of a biofilm during reactor start-up (35 days) was studied. The reactor was inoculated with 1.6 g VSS/L of granular sludge, ground low density polyethylene was used as support material; the feed consisted of mineral medium at pH 5.5 containing 1 g COD/L (acetate:lactate, 70:30) and sodium sulfate. Four experiments were conducted at HRT of 1 or 2 days and COD/SO4(2-) ratio of 0.67 or 2.5. The results obtained indicated that a COD/SO4(2-) ratio of 2.5 and HRT 2 days allowed high sulfate and COD removal (66.1 and 69.8%, respectively), whereas maximum amount of attached biomass (1.9 g SVI/L support) and highest sulfate reducing biofilm activity (10.1 g COD-H2S/g VSS-d) was achieved at HRT of 1 day and at COD/sulfate ratios of 0.67 and 2.5, respectively, which suggests that suspended biomass also played a key role in the performance of the reactors.  相似文献   

20.
Synthetic wastewater was treated using a novel system integrating the reversed anoxic/anaerobic/oxic (RAAO) process, a micro-electrolysis (ME) bed and complex biological media. The system showed superior chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal rates. Performance of the system was optimised by considering the influences of three major controlling factors, namely, hydraulic retention time (HRT), organic loading rate (OLR) and mixed liquor recirculation (MLR). TP removal efficiencies were 69, 87, 87 and 83% under the HRTs of 4, 8, 12 and 16 h. In contrast, HRT had negligible effects on the COD and TN removal efficiencies. COD, TN and TP removal efficiencies from synthetic wastewater were 95, 63 and 87%, respectively, at an OLR of 1.9 g/(L·d). The concentrations of COD, TN and TP in the effluent were less than 50, 15 and 1 mg/L, respectively, at the controlled MLR range of 75-100%. In this system, organics, TN and TP were primarily removed from anoxic tank regardless of the operational conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号