首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了得到稳定化α-Ni(OH)2,使用X衍射法对添加Al或Co的α-Ni(OH)2的化学稳定性和电化学稳定性进行了研究。实验表明,α-Ni(OH)2中Al,Co摩尔百分含量为15%时,晶型不稳定,含Co20%的α-Ni(OH)2化学稳定性可达3个月;含Al20%的α-Ni(OH)2具有较好的化学稳定性和电化学稳定性,在7M的KOH中最少可稳定6个月,充放电100次晶型不改变,并且容量稳定。  相似文献   

2.
为了得到比能量高、晶型稳定的α—Ni(OH ) 2 ,使用恒流放电方法 ,研究了添加剂Al,Co对α—Ni(OH) 2 电化学性能的影响 .实验表明 ,添加Al的α—Ni(OH) 2 比容量高于 β Ni(OH) 2 的理论比容量 .Al,Co的添加对α—Ni(OH) 2 的比容量和放电电压有影响 .Al含量的增加提高了α—Ni(OH)的放电电压 .Al含量为2 0 %的α -Ni(OH) 2 比容量最高  相似文献   

3.
稳定化α—Ni(OH)2电化学性能的研究   总被引:1,自引:0,他引:1  
为了得到比能量高,晶型稳定的α-Ni(OH)2,使用恒流放电方法,研究了添加剂Al,Co对α-Ni(OH)2电化学性能的影响,实验表明,添加Al的α-Ni(OH)2比容量高于β-Ni(OH)2的理论比容量,Al,Co的添加对αNi(OH)2的比容量和放电电压有影响,Al含量的增加提高了α-Ni(OH)的放电电压,Al含量为20%的α-Ni(OH)2的比容最高。  相似文献   

4.
采用共沉淀法制得的不同陈化时间前驱体均由α-Ni(OH)2和β-Ni(OH)2两相混合组成.随着前驱体中α-Ni(OH)2相对含量增大,对应烧结产物LiNi0.8Co0.1Mn0.1O2的峰强比I(003)/I(104)越大,层状结构越完整,阳离子混排度越小,说明α-Ni(OH)2相的存在可以抑制阳离子混排.陈化12 h前驱体制得的LiNi0.8Co0.1Mn0.1O2峰强比I(003)/I(104)=1.27,其首次放电容量121.9 mA·h/g,30次循环后放电容量113.1 mA·h/g,容量保持率92.8%,其质量比容量大,循环性能好.  相似文献   

5.
采用均相沉淀法分别制备了α-Ni( OH)2和α-Ni( OH)2/GO复合材料,并对其微观结构和电化学性能进行了考察。 XRD分析表明α-Ni(OH)2/GO 复合材料层间距更大; FT -IR 表明α-Ni(OH)2/GO复合材料中NO3-振动吸收峰峰形逐渐宽化、强度减弱; FESEM图像表明α-Ni(OH)2/GO复合材料结构更加致密。采用CV、 EIS和充放电测试表征了合成样品的电化学性能,发现α-Ni(OH)2/GO复合材料具有相对较低的阻抗、较好的循环稳定性和较高的放电比容量。  相似文献   

6.
采用化学共沉淀法制备Al^(3+)掺杂α-Ni(OH)2粉体,将其复合碳纳米管(CNTs)制成镍电极材料并研究其在高温下的电化学性能。结果表明:以混合CNTs(w=0.5%)的Al掺杂α-Ni(OH)2样品材料为活性物质制成镍电极,由其组装的MH-Ni电池在65℃高温环境下,采用0.2和1.0 C充放电制度的放电比容量分别为391.1和366.4 mAh·g^-1;经40次充放电循环,放电比容量衰减率分别为6.8%、11.98%,表现出较好的高温环境电化学性能。  相似文献   

7.
通过采用NiC2O4*2H2O和NaOH进行固相反应,制备出10~20 nm的β-Ni(OH)2和20~30 nmNiO粉体,样品按一定的比例掺杂Co(OH)2和石墨粉制备复合电极,研究其电化学性能.结果表明掺杂Co(OH)2的纳米Ni(OH)2和NiO复合电极其电化学性能有明显的改善,其电极结构稳定,充电效率高,开路电位达2.4 V,电极经10 mA/cm2恒电流充电3 h后,以0.9 mA/cm2进行恒流放电,放电时间达到16h以上,放电容量明显增大,放电电位平稳.  相似文献   

8.
硼对稀土系AB5型贮氢合金电化学容量及循环寿命的影响   总被引:1,自引:0,他引:1  
为了提高低钴AB5型贮氢合金的电化学循环稳定性,在MmNi3.8Co0.4Mn0.6Al0.2贮氢合金中加微量的硼.用真空快淬工艺制备了稀土系低钴AB5型MmNi3.8Co0.4Mn0.6Al0.2Bx(x=0,0.1,0.2,0.3,0.4)贮氢合金,分析测试了铸态及快淬态合金的电化学性能及微观结构,研究了硼对铸态及快淬态合金电化学容量及循环寿命的影响.结果表明,硼使铸态及快淬态MmNi3.8Co0.4Mn0.6Al0.2贮氢合金的电化学容量不同程度地降低,但使电化学循环稳定性大幅度提高.硼对电化学性能的影响主要是促进非晶相的形成.  相似文献   

9.
以LiNO3、Al(NO3)3.9H2O、Co(NO3)2.6H2O和球形Ni(OH)2为原料,采用熔盐包裹法在空气中合成了LiNi0.8-xCo0.2AlxO2.采用XRD、SEM和电池性能测试仪研究了合成产物的结构、形貌和电化学性能.考察了合成温度、合成时间、掺铝量和锂过量对合成产物结构的影响.实验表明,采用熔盐包裹法在空气中合成的LiNi0.8-xCo0.2AlxO2具有α-NaFeO2型层状有序结构和球状形貌,并具有良好的电化学性能,其中LiNi0.7Co0.2Al0.1O2的最大放电比容量达到157.7 mAh/g.在空气中合成LiNi0.8-xCo0.2AlxO2的最佳工艺条件为合成温度750℃,合成时间16 h,锂过量10%(摩尔分数).  相似文献   

10.
Cl-和Al3+复合掺杂α-Ni(OH)2的电化学性能   总被引:1,自引:0,他引:1  
采用化学反应共沉淀法制备出Cl-和Al3 阴阳离子复合掺杂的α-Ni(OH)2粉体材料。对其进行了微结构表征分析和电化学性能测试,结果表明:样品材料具有较多的微结构缺陷,用作MH-Ni电池的正极活性材料时,在充放电过程中电化学阻抗较小、质子迁移能力强。电池在以80 mA/g恒电流充电5 h,40 mA/g恒电流放电,终止电压为1.0 V的充放电制度下,其放电比容量达344.3 mAh/g,且放电工作电压稳定,循环可逆性较好,表现出较高的电化学活性。  相似文献   

11.
采用共沉淀高温固相反应法合成锂离子电池正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2(811),通过掺入Li、Mg和Al元素,并采用SEM、XRD、电化学测试,研究掺杂对材料晶体结构和电化学性能影响规律.实验结果表明:共沉淀过程中三价金属离子(Mn~(3+)、Al~(3+))出现会促使少量α-Ni(OH)2形成,而Li~+、Mg~(2+)和Al~(3+)均溶入晶格无杂相析出.高温融锂反应中,三种掺杂元素显著削弱Ni~(2+)出现数量,抑制Ni~(2+)混排进入Li~+格位,大幅提升811基体可逆容量;Mg~(2+)、Al~(3+)掺杂进一步增强基体晶格稳定性,改善其循环性能;Li~+-Al~(3+)共掺杂使之达到最佳:首次充电效率ICE超过90%,0.2C倍率下50次循环容量达195.8 m Ah/g、容量保持率为96.2%.  相似文献   

12.
研究了Al替代对AB3型La2Mg(Ni1-xAlx)9(x=0.1,0.2)合金相组成、储氢性能和失效行为的影响.表明Al在常温下促进La(Ni, Al)5相含量的提高和LaMg2Ni相的形成,并导致合金放氢困难和电化学放电容量的降低.由于La2MgNi2和LaMg2Ni相含量的增加,合金耐KOH的腐蚀性降低.腐蚀产物主要为La(OH)3,La2O3和Mg(OH)2.通过Al替代改善合金电化学放电和循环稳定性的关键在于优化其中的相组成类型.  相似文献   

13.
以Ni(OH)2,Al(OH)3和LiOH·H2O为原料,采用高温固相反应法在空气中合成了锂离子电池正极材料LiNi1-xAlxO2(x=0.025~0.30),用XRD研究了合成材料的物相和结构.研究了合成温度、合成时间、补锂量以及掺铝量对合成产物结构的影响.实验表明,掺铝有利于形成和稳定α-NaFeO2型层状有序结构.随着掺铝量的增加,晶胞参数a0逐渐减小,而c0则逐渐增大.在空气中合成LiNi1-xAlxO2的最佳温度为750 ℃,合成时间以18~24 h为宜,补锂量为10%(摩尔分数)效果较好.  相似文献   

14.
利用纳米铝和沉淀法制备纳米α-Al2O3粉体   总被引:2,自引:1,他引:2  
以Al(NO3)3·9H2O、氨水和纳米铝粉为原料,采用液相沉淀法制备出Al(OH)3溶胶,经过真空抽滤和高温煅烧获得了纳米α-Al2O3粉体.研究了反应体系pH值、纳米铝粉添加和煅烧温度对Al(OH)3溶胶质量以及Al2O3晶型转化温度的影响.结果表明,反应体系pH值为9时可以获得团聚少、分散性好的Al(OH)3溶胶,添加摩尔分数为3%的纳米铝粉作为籽晶可以使α-Al2O3的转变温度降至1000℃左右.实验获得的纳米α-Al2O3粉体粒度分布均匀,无明显团聚,近似球形,平均粒径约为20 nm.  相似文献   

15.
以单质碘为催化剂,以无水乙醇为溶剂和碳源,采用溶剂热法制备了Ni(OH)2/C复合材料,研究了催化剂量对Ni(OH)2/C复合材料颗粒形貌和电化学性能的影响.结果表明:产物为非球形的β-Ni(OH)2/C复合材料;当I2与Ni(OH)2的质量比为3/5时,Ni(OH)2的平均晶粒粒径最小,为16.3 nm,并呈现出最佳电化学性能:当电流密度为1 A/g时,其比容量高达1 200.0 F/g,同时具有很好的大电流充放电性能,当电流密度为5 A/g时放电比容量达到937.5 F/g,保持率约为78%.  相似文献   

16.
用微乳液法制备了Co、Sr复合掺杂β-Ni(OH)2纳米粒子,详细研究了合成工艺条件对化学粒子结构形态与电化学性能的影响,探讨了掺杂纳米氢氧化镍电化学活性的作用机理.对样品分别进行了XRD、TEM分析,以及充放电性能和循环伏安特性的测试.结果表明,在pH=10.5、t=40℃,掺杂剂CoSO4、SrCl2的质量分数为3%、7%时,样品的平均粒径为35 nm左右,且分布较为均匀,无明显团聚现象.该条件下制备的样品以0.1C的倍率放电,在终止电位为1.0 V时,其比容量可达286.2 mAh/g,放电工作电位平稳于1.27 V.  相似文献   

17.
制备和研究了过化学计量比无钴合金La(NiM)5 x(M=Cu,Mn,Al,x=0.3-1.0)在常规熔铸、高温退火 淬火及快速凝固不同制备条件下的组织结构和电化学性能.X射线衍射分析表明,熔铸合金组织均由CaCu6型主相和少量第二相组成;当M为Cu和Mn元素时,退火 淬火处理及快速凝固合金在x=0.3-1.0范围内为单相组织,而含A1合金则很难获得单相组织.电化学实验表明,退火 淬火处理后的合金MH电极具有易活化、电化学容量较高、电极循环稳定性得到不同程度改善,其中以含Cu和Mn元素的单相组织合金循环稳定性量好.快速凝固合金均大大提高了合金的电化学稳定性,但其活化性能和电极容量明显下降.  相似文献   

18.
β-Ni(OH)2 is the cathode active material in Ni-Cd and Ni-MH batteries. Recent inves- tigation has shown that the shape of β-Ni(OH)2 crystallite is a cylinder of D in diameter, with base plane parallel to (001) and height H in direction [001]. There are 10% ofdeformation faults and 8% of growth faults[1] in the crystallites. When the total probabil- ity of the stacking faults exceeds 15%[2], the material has the optimized electrochemical performance. As for crystallite shapes of β-Ni(O…  相似文献   

19.
掺铝的α型氢氧化镍的合成及其电化学性能   总被引:1,自引:0,他引:1  
目前使用的碱性二次电池中,镍系列电池占有很重要的地位,其中镍电极是其核心.镍电极的研究集中于掺杂离子对电极过程的作用机理、具有优良的电化学性能的稳定的α—Ni(OH)2和纳米Ni(OH)2的制备等三个热点上.由于NiOOH/Ni(OH)2电化学储能所涉及的活性物质在碱性介质中具有不溶解性及长寿命的优点,所以氢氧化镍特别适宜作为碱性蓄电池的正极活性物质.  相似文献   

20.
采用等pH值沉淀及共沉淀法制得助剂Al(OH)_3胶、Al(OH)_3-Mg(OH)_2胶、Al(OH)_3-Zn(OH)_2胶及活性组分,按一定重量比湿法混合均匀,经煅烧活化后制得含不同助剂的挤条催化剂.用全玻璃外循环无梯度反应器、XRD 和加速老化等技术对这些催化剂进行考察.结果表明,助剂的引入使催化剂的挤条机械强度得到改善,比表面在不同程度上增大;铝胶助剂易与活性组份中的二价元素生成铝酸盐,阻碍了铁酸盐尖晶石的生成,但助剂中有Mg(OH)_2或Zn(OH)_2存在时阻碍作用大大减小;XRD 可检测到催化剂主要由铁酸盐尖晶石相和α-Fe_2O_3相组成;含助剂的催化剂抗老化性明显优于不含助剂的样品及工业催化剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号