首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为研究生物柴油低温流动性,以4-二甲氨基吡啶(DMAP)为催化剂,棕榈酸与叔丁醇为原料反应合成棕榈酸叔丁酯。单因素试验分析表明,反应温度为82℃,反应时间为60 min,催化剂用量为10%,醇酸摩尔比为7.5∶1时转化率达到最高,最高转化率为93.10%;正交试验表明,对转化率的主要影响顺序为:反应温度、醇酸摩尔比、催化剂用量、反应时间。反应的最佳条件为:温度87℃,反应时间为60 min,催化剂用量为10%,醇酸摩尔比为10∶1,在此最佳条件下进行验证试验,得到转化率为95.68%;最后,对棕榈酸叔丁酯低温流动性进行了测定及分析。  相似文献   

2.
SO42-/TiO2-ZrO2固体酸催化乌桕籽油制备生物柴油的研究   总被引:1,自引:0,他引:1  
乌桕籽油是一种可再生的木本植物油料,可与甲醇发生酯交换反应制得生物柴油.试验表明,固体酸催化剂SO42-/TiO2-ZrO2对乌桕籽油酯交换反应表现出了较高的催化活性,当反应温度为150 ℃、醇油物质的量比为12:1、催化剂用量为乌桕籽油质量的5%、反应时间为6 h时,乌桕籽油的酯化率达到95%以上,催化剂重复和再生使用效果良好.同时,对该催化剂的SEM,TEM,XRD,BET结构表征表明,该催化剂表面呈多孔状,颗粒大小分布在10~100 nm,比表面积为114 m2/g,是一种纳米固体催化剂.  相似文献   

3.
以酸值123.04 mg KOH/g的棕榈油脱臭馏出物(PFAD)为原料,在带压反应器中,用浓硫酸为催化剂,采用一步法催化酯化反应制备生物柴油。重点研究反应温度、反应时间、催化剂用量和醇油比等因素对酯化和酯交换反应的影响。结果表明,提高反应温度能促进酯化反应和酯交换反应,使高酸值原料经一次反应直接转化为目的产物——脂肪酸甲酯,从而缩短制备流程,降低成本,强化酯化反应进行,提高脂肪酸甲酯收率。当催化剂用量为0.5%(质量分数)、醇油物质的量之比7∶1、在130℃反应90 min后,生物柴油的最高收率达到88.1%。较之酸碱两步法催化高酸值油料制备生物柴油能显著缩短反应时间、简化工艺流程、降低生产成本。  相似文献   

4.
大豆酸化油制备生物柴油的研究   总被引:4,自引:0,他引:4  
试验研究了大豆酸化油在复合酸催化剂的作用下与甲醇发生转酯化和酯化反应生成脂肪酸甲酯(生物柴油)的最佳反应条件.试验结果表明,该酯化及转酯化反应的最佳操作条件:复合酸催化剂的用量为大豆油质量的5%、油醇摩尔比为1:6、反应时间为6h、反应温度为65℃.  相似文献   

5.
以棉籽油制备二聚酸的工业副产物为原料,采用对甲苯磺酸作催化剂进行酯化反应制备生物柴油.试验考察了反应条件对酯化率的影响,试验结果表明:在反应温度为75℃,催化剂用量为脂肪酸质量的8%,醇酸物质的量比为3:1的条件下,反应4h,酯化率可以达到97%.反应后对产物进行减压旋转蒸发,回收甲醇和催化剂.该试验操作方便,催化剂活性高,污染小,酯化率高.  相似文献   

6.
正交试验探讨脂肪酸超临界酯化制备生物柴油   总被引:4,自引:0,他引:4  
探讨脂肪酸在超临界甲醇中酯化反应的规律及最佳条件。以橡胶籽油脂肪酸为原料,在间歇式高温高压反应釜中通过酯化反应制备生物柴油,分别考察了酯化反应条件如反应温度、反应时间、甲醇与脂肪酸的体积比对酯化率的影响。应用正交试验方法得出酯化反应的较适宜条件为:反应温度290℃,反应时间30min,甲醇与脂肪酸的体积比为4:1。在此反应条件下转化率可达99.2%。橡胶籽油生物柴油成分主要有亚油酸甲酯、油酸甲酯、亚麻酸甲酯,还有少量的硬脂酸甲酯、棕榈酸甲酯。  相似文献   

7.
包衣酶催化地沟油制备生物柴油   总被引:7,自引:0,他引:7  
实验考察了以地沟油为原料,三阶段包衣酶催化制备生物柴油的工艺.以中心组合设计试验,选取反应时间、反应温度、包衣酶用量、醇油摩尔比和水分添加量为影响酯化率的主要因素,通过响应面分析得优化的工艺条件为:反应时间9.4×3h,反应温度54℃,包衣酶用量18.7%,醇油摩尔比3.6:1,水分添加量17.2%,在最佳条件下的酯化率为93.68%.  相似文献   

8.
以棉籽酸化油和甲醇为原料,采用酸催化两步法制备生物柴油.第一步为酸催化酯化和一次酯交换反应,第二步为酸催化二次酯交换反应.通过大量试验优化了反应条件:在酯化和一次酯交换阶段,醇油质量比为0.5:1,催化剂用量为棉籽酸化油质量的3%,反应温度为90℃,反应时间为150 min:在二次酯交换阶段,醇油质量比为0.7:1,催化剂用量为棉籽油质量的4%,反应时间为90min.在此条件下,生物柴油的产率达到94%以上,产品质量符合国家标准.  相似文献   

9.
硫酸氢钠催化生物柴油合成反应的研究   总被引:5,自引:0,他引:5  
以固体酸硫酸氢钠(NaHSO4·H20)为催化剂,以菜籽油和甲醇为反应物进行酯交换反应制备脂肪酸甲酯(生物柴油).采用正交实验考察了各因素对生物柴油产率的影响,得出最佳反应条件:反应温度为90℃,反应时间为12h,醇油物质的量比为40:1,催化剂用量为菜籽油质量的6%.极差顺序为温度、反应时间、醇油物质的量比、催化剂用量.  相似文献   

10.
试验研究了以地沟油为原料,在脂肪酶作用下与甲醇发生酯交换反应制备生物柴油的工艺条件,通过单因素试验和正交试验对该工艺的操作条件进行优化,得到最佳的工艺条件为醇油摩尔比为2∶1,脂肪酶催化剂用量按每克油脂90 U添加,正己烷和水添加量均为油重的10%,反应温度为20℃,反应时间为28 h,甲酯得率为97.12%。该新工艺与传统工艺相比,具有操作简单,转化率高,成本低,可重复性好等优点,有利于为酶法制备生物柴油的产业化发展提供一定理论基础。  相似文献   

11.
甲醇的产能在所有化工产品中仅次于乙烯和合成氨,每年产生的废甲醇催化剂数量巨大。合成甲醇催化剂经历了锌铬高压催化剂、铜基催化剂、合金催化剂及其他非铜基催化剂3个发展阶段,目前在工业中应用的主要为铜基催化剂,此类废催化剂的回收主要围绕Cu和Zn的分离及回收展开。回收工艺可分为酸浸、氨浸和酸浸-电解工艺。废催化剂预处理的关键是在800~1000℃进行焙烧,其目的一是去除有机物,二是脱硫,三是使其中的氧化铝或Cr2O3转化为酸难溶的晶型,四是使金属铜或氧化亚铜转化为氧化铜。预处理后的废催化剂可通过H2SO4酸浸-Zn还原法回收活性ZnO和CuSO4·5H2O,通过H2SO4酸浸-SO32-还原法回收活性ZnO和CuCl,通过HNO3酸浸-Zn还原法制备硝酸盐,通过H2SO4-NHO3联合酸浸法制备胆矾和铝铵矾;通过NH4+铬合氨浸回收CuCl和活性ZnO,通过NH4+-NH3复合氨浸回收Cu2O和ZnO;通过H2SO4酸浸-电解回收单质Cu。此外,还可以被制成微肥或作为脱硫剂使用。  相似文献   

12.
In this study, potassium hydroxide-treated animal bones were employed? as a solid heterogeneous catalyst in transesterification of waste cooking oil. This catalyst was characterized by the Fourier-transform infrared spectroscopy (FTIR), and it displayed high-catalytic activity for biodiesel production. Optimum conditions for biodiesel production were catalyst loading 6.0% (w/w) of oil, methanol/oil molar ratio 9:1, calcination temperature 800°C, reaction temperature 65°C, and reaction time of 5 h, which gave maximum biodiesel yield of 84%. Reusability of the catalyst was also confirmed by repeated use of the same catalyst three times without losing much of its activity. Hence, calcined goat bones were found to be a potentially applicable catalyst for biodiesel production at industrial scale.  相似文献   

13.
In the present work, we report the results of a series of experiments for the hydrogen production via steam reforming of methanol with Cu–SiO2 porous catalyst coated on the internal walls of a micro-reactor with parallel micro-passages. The catalyst was prepared by coating copper and silica nanoparticles on the internal surface of the microchannel via convective flow boiling heat transfer, followed by a calcination procedure at 973 K and therefore, the catalyst does not require any supportive material, which in turn reduced the complexity and cost of the preparation. The experiments were conducted at reactant flow rates of 0.1–0.9 lit/min, operating temperatures of 523–673 K, catalyst loading of 0.25 gr to 1.25 gr and at heat flux value of 500 kW/m2. Results of the experiments showed that the methanol conversion can reach 97% at catalyst loading of 1.25 gr. It was also found that with an increase in the gas hourly space velocity (GHSV) of the reactants, the methanol conversion decreases, which was attributed to the decrease in the residence time, the suppression in diffusion of reactants into the pores of the catalyst, and also the decrease in the average film temperature of the reactor. The highest methanol conversion was obtained at gas hourly space velocity of 24,000 ml/(gr.hr) and T = 773 K and for molar ratio of methanol to water of 0.1. The molar ratio of methanol to water also influenced the thermal response of the reactor such that the surface temperature profile of the micro-reactor was more decreased at low methanol/water molar ratios.  相似文献   

14.
A green template-free method is proposed for the synthesis of mesoporous Ni–Cu/Al2O4 catalyst in sub-kilogram scale. In the convenient synthetic method, an intermediate is formed via electrostatic forces and hydrogen bonding interactions between the aluminate ions and the metal ions and/or metal hydroxides under suitable pH conditions. The desired Ni–Cu/Al2O4 composites, with Ni/Cu molar ratios of 10%, 20% and 30% of Cu at Cu/Al molar ratio of 10.0%, respectively, are then obtained from calcination. The nitrogen adsorption-desorption isotherms show that the Ni–Cu/Al2O4 composites have specific surface areas of 136–170 m2g-1. The Ni–Cu/Al2O4 products are used as catalyst materials in the methanol steam reforming (MSR) of hydrogen and are shown to have a high conversion efficiency (>99%), a low methane concentration, good stability, and a high hydrogen yield (H2/methanol molar ratio ≈ 3.0) at low reaction temperatures in the range of 200–300 °C. In addition, the coke formation on the catalyst surface is less than 1.0 wt% even after a reaction time of 30 h. Notably, the Ni–Cu/Al2O4 catalyst can be regenerated by calcination at 800 °C and retains a high methanol conversion efficiency of close to >99% when reused in MSR.  相似文献   

15.
A new type of solid superacid catalyst with the composition of /ZrO2–TiO2 loaded with lanthanum was prepared by precipitation and impregnation. The catalytic performance for the synthesis of fatty acid methyl ester from fatty acid and methanol was investigated. The influences of preparation conditions on catalyst performance were studied, the optimum results of which showed that amount of La(NO3)3 was 0.1 wt.%, the concentration of H2SO4 for impregnation was 0.5 mol l−1 and calcination temperature was 550 °C. In addition, the effects of reaction parameters on esterification efficiency were also studied. With the catalyst amount of 5 wt.%, methanol amount of 1 ml/g fatty acid (FA) and reaction duration of 5 h at 60 °C, the conversion ratio could reach above 95%. The catalyst recycled without any treatments could exhibit high activity with the conversion efficiency of above 90% after being reused five times.  相似文献   

16.
WO_3对于V_2O_5/TiO_2脱硝催化剂的抗中毒作用   总被引:2,自引:0,他引:2  
实验室制备了V2O5/TiO2以及添加了不同含量WO3的催化剂,并在催化剂上负载碱金属氧化物K2O模拟中毒.在SCR活性试验台上研究不同含量K2O对催化剂脱硝活性,N2O生成率和SO2的氧化率的影响.结果发现,K2O对于催化剂的毒性较强,随着添加量的增大,NO脱除率急剧下降,SO2的氧化率大大提高.K2O通过与V2O5的活性酸性位结合,使催化剂中有效活性位数量大为降低,导致脱硝活性下降.添加WO3后,K2O对催化剂的中毒作用明显减弱,源于WO3较强的Bronsted酸性对催化剂性能的促进作用.综合考虑认为在V2O5/TiO2催化剂上添加10%左右的WO3抗中毒性能较好.  相似文献   

17.
The preparation of a Li-doped MgO for biodiesel synthesis has been investigated by optimizing the catalyst composition and calcination temperatures. The results show that the formation of strong base sites is particularly promoted by the addition of Li, thus resulting in an increase of the biodiesel synthesis. The catalyst with the Li/Mg molar ratio of 0.08 and calcination temperature of 823 K exhibits the best performance. The biodiesel conversion decreases with further increasing Li/Mg molar ratio above 0.08, which is most likely attributed to the separated lithium hydroxide formed by excess Li ions and a concomitant decrease of BET values. In addition, the effects of methanol/oil molar ratio, reaction time, catalyst amount, and catalyst stability were also investigated for the optimized Li-doped MgO. The metal leaching from the Li-doped MgO catalysts was detected, indicating more studies are needed to stabilize the catalysts for its application in the large-scale biodiesel production facilities.  相似文献   

18.
银可用作多种氧化反应催化剂的活性组分,尤其是作为乙烯氧化制环氧乙烷和甲醇氧化制甲醛的催化剂已工业化应用多年。甲醇氧化制甲醛废银催化剂采用草酸除铁后,主要采用电解工艺进行回收。目前废环氧乙烷银催化剂中银的回收采用湿法,银的溶解方法包括硫酸溶解法、硝酸溶解法、亚硫酸钠溶解法、硫代硫酸盐溶解法、硫脲溶解法和强碱溶解法,高含量废银催化剂常采用硝酸溶解法。无论是从降低硝酸的消耗量,还是从降低NOx的排放量上看,选用稀硝酸溶解银都是有利的。从银离子得到单质银的工艺包括还原法(溶液中还原和干态还原)、熔炼-筛选-脱碳法、热解法和吸附法,通常采用还原法。常用的还原剂有硼氢化钠、双氧水、硫酸亚铁及Fe、Zn、Al等无机还原剂和醛类、醇类、水合肼、抗坏血酸等有机还原剂。硝酸与金属反应时,首先被还原成中间体HNO2,反应产物的种类及组成随硝酸浓度和金属种类而发生变化。有研究认为,硝酸溶解废银催化剂中银的最佳工艺条件为:反应温度85℃,反应及恒温时间70min,酸量为理论耗量的1.2倍,固液比1:4。NOx尾气的处理主要有碱吸收法、分子筛吸附法、催化还原法和稀硝酸吸收法等。硝酸溶解-NaCl沉淀-Fe粉还原法是将废银催化剂中的银回收为单质银的较好工艺。今后努力的方向是进一步提高银回收率。  相似文献   

19.
采用等体积浸渍法在HZSM-5分子筛上引入Ga2O3,探究Ga改性HZSM-5分子筛对2-甲基呋喃(MF)和甲醇在固定床反应器中进行偶合反应的产物分布的影响。采用XRD、HTEM、BET和NH3-TPD对催化剂的理化性质进行表征,结果显示,Ga的负载使得HZSM-5比表面积和孔容减小,改变了HZSM-5的酸类型及酸位强度分布。偶合反应结果表明,Ga的负载能够促进MF和甲醇的转化,Ga/HZSM-5不仅可以提高芳香烃的产率,而且提高了芳香烃产物中BTX的选择性。与HZSM-5相比,0.1%Ga/HZSM-5在反应温度为500℃、MF与甲醇摩尔比为1∶2、WHSV为2 h−1反应条件下,使芳香烃产率从14.6%提高到23.7%,而BTX的选择性则从55.2%提高到67.8%。  相似文献   

20.
The use of MgO impregnated with KOH as heterogeneous catalysts for the transesterification of mutton fat with methanol has been evaluated. The mutton fat (fat) with methanol (1:22 M ratio) at 65 °C showed > 98% conversion to biodiesel with 4 wt% of MgO–KOH-201 (MgO impregnated with 20 wt% of KOH) in 20 min. The reaction conditions optimized were; the amount of KOH impregnation (5–20 wt%), the amount of catalyst (1.5–4 wt%, catalyst/fat), the reaction temperature (45–65 °C), fat to methanol molar ratio (1:11–1:22) and the effect of addition of water/oleic acid/palmitic acid (upto 1 wt%). Although, transesterification of fresh fat (moisture content 0.02 wt% and free fatty acids 0.002 wt%) with methanol in the presence of KOH (homogenous catalyst) resulted in the complete conversion to biodiesel, but in the presence of additional 1 wt% of either free fatty acid or moisture content, formation of soap was observed. The MgO–KOH-20 catalyst was found to tolerate additional 1 wt% of either the moisture or FFAs in the fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号