首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dry sliding wear of fly ash particle reinforced A356 Al composites   总被引:3,自引:0,他引:3  
Sudarshan  M.K. Surappa 《Wear》2008,265(3-4):349-360
In the present study aluminium alloy (A356) composites containing 6 and 12 vol. % of fly ash particles have been fabricated. The dry sliding wear behaviour of unreinforced alloy and composites are studied using Pin-On-Disc machine at a load of 10, 20, 50, 65 and 80 N at a constant sliding velocity of 1 m/s. Results show that the dry sliding wear resistance of Al-fly ash composite is almost similar to that of Al2O3 and SiC reinforced Al-alloy. Composites exhibit better wear resistance compared to unreinforced alloy up to a load of 80 N. Fly ash particle size and its volume fraction significantly affect the wear and friction properties of composites. Microscopic examination of the worn surfaces, subsurfaces and debris has been done. At high loads (>50 N), where fly ash particles act as load bearing constituents, the wear resistance of A356 Al alloy reinforced with narrow size range (53–106 μm) fly ash particles were superior to that of the composite having the same volume fraction of particles in the wide size range (0.5–400 μm).  相似文献   

2.
In the present study, a new mathematical model was developed to predict the abrasive wear rate of AA7075 aluminum alloy matrix composites reinforced with SiC particles. Five factors, five levels, central composite, rotable design matrix was used to optimise the required number of experiments. The model was developed by response surface method. Analysis of variance technique was applied to check the validity of the model. Student's t-test was utilised to find out the significant factors. The effect of volume percentage of reinforcement, reinforcement size, applied load, sliding speed and abrasive size on abrasive wear behaviour was analysed in detail.  相似文献   

3.
《Wear》2007,262(3-4):262-273
The objective of the present investigation was to assess the influence of SiC particle dispersion in the alloy matrix, applied load, and the presence of oil and oil plus graphite lubricants on the wear behaviour of a zinc-based alloy. Sliding wear performance of the zinc-based alloy and its composite containing SiC particles has been investigated in dry and lubricated conditions. Base oil or mixtures of the base oil with different percentages of graphite were used for creating the lubricated conditions. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloys. It was also observed that there exists an optimum concentration of graphite particles in the lubricant mixture that leads to the best wear performance. The composite experienced higher frictional heating and friction coefficient than the matrix alloy in all the cases except oil lubricated conditions; a mixed trend was noticed in the latter case. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.Examination of worn surfaces revealed a change of predominating wear mechanisms from severe ploughing and/or abrasive wear for base alloy to delamination wear for the reinforced material under dry sliding conditions. The presence of the lubricant increased the contribution of adhesive wear component while reducing the severity of abrasion. This was attributed to the generation of more stable lubricant films on the contacting surfaces. Cross-sections of worn surfaces indicated substantial wear-induced plastic deformation, thereby suggesting adhesive wear to be a predominant wear mechanism in this study. The debris particles revealed deformed flakes and machining chips signifying the involvement of adhesion and abrasion modes of wear respectively.  相似文献   

4.
Chand  Navin  Neogi  Somit 《Tribology Letters》1998,4(1):81-85
The low-stress abrasive wear behaviour of chopped-glass-fibre-reinforced polyester composites has been studied by using a rubber wheel abrasion test (RWAT) apparatus. Silica sand particles of two different size ranges were used in the current study as dry and loose abrasives. Weight loss of the composites during three-body abrasion has been examined as a function of the sliding distance. Abrasive wear of the composites shows dependence both on abrasive particle sizes and applied load, as well as the weight fraction of glass fibre reinforcement. It has also been observed that the wear rate becomes constant with the increasing sliding distance. Scanning electron microscopy was used to observe the worn surfaces and to understand the mechanism involved in material removal. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Apart from the service conditions during the braking (e.g. applied pressure, velocity of rotor) the friction-wear properties of friction composites used as a car brake lining are directly influenced by their composition. Among the components used for a car brake lining, the chemical and structural nature of the abrasives, jointly with the morphology and size of the particles, influence the friction parameters and stability of the composite. In the present paper the effect of silicon carbide abrasive of various particle sizes (40, 10, and 3 μm) on the friction-wear properties of friction composites based on potassium titanate ceramics is summarized. The composites with an increasing amount of the abrasive in composition (3.4, 5.6, 9.0, and 14.6 vol%) for each SiC size were prepared. The highest values of friction coefficient as well as the lowest fade for the composites containing the finest SiC fraction (median value 3 μm) were obtained. Contrary to the friction coefficient, the values of specific wear rate decrease with increasing SiC particle size. Transport of the iron particles, originated from the cast iron rotor, increases with SiC particle size and decreases with the testing temperature.  相似文献   

6.
In the present study, the effect of granite reinforcement on the dry sliding wear behaviour of an aluminium–silicon alloy (BS:LM6) was investigated using a pin-on-disc machine. The composite was prepared using liquid metallurgy technique wherein 10 wt.% granite particles were incorporated in the matrix alloy. Sliding wear tests were conducted at applied loads in the range 0.2–1.6 MPa and speeds of 1.89, 3.96 and 5.55 m/s. The matrix alloy was also prepared and tested under identical conditions in order to see the influence of the dispersoid phase on wear behaviour. It was observed that the composite exhibited lower wear rate than that of the matrix alloy. Increasing applied load increased the wear rate. In the case of the composite, the wear rate decreased with speed except at higher pressures at the maximum speed; the trend reversed in the latter case. On the contrary, the matrix alloy exhibited minimum wear rate at the intermediate test speed. Seizure pressure of the composite was significantly higher than that of the matrix alloy, while temperature rise near the contacting surfaces and the coefficient of friction followed an opposite trend. SEM examination of the worn surfaces, subsurface regions and debris enabled to understand the operating wear mechanisms.  相似文献   

7.
In this study, the effects of volume fraction and particle size of boron carbide on the abrasive wear properties of B4C particle reinforced aluminium alloy composites have been studied. For this purpose, a block-on-disc abrasion test apparatus was utilized where the samples slid against the abrasive suspension mixture at room conditions. The volume loss, specific wear rate and roughness of the samples have been evaluated. The effects of sliding time, particle content and particle size of B4C particles on the abrasive wear properties of the composites have been investigated. The dominant wear mechanisms were identified using scanning electron microscopy. The results showed that the specific wear rate of composites decreased with increasing particle volume fraction. Furthermore, the specific wear rate decreased with increasing the size of particle for the composites containing the same amount of B4C. Hence, it is deduced that aluminium alloy composites reinforced with larger B4C particles are more effective against the abrasive suspension mixture than those reinforced with smaller B4C particles.  相似文献   

8.
The wear rate model of 7.3?vol.% Al2O3 particle-reinforced aluminium alloy composites with 16 and 66???m particle sizes fabricated by molten metal mixing method was developed in terms of applied load, particle size of reinforcement, abrasive grain size and sliding distance based on the Taguchi method. The two-body abrasive wear behaviour of the specimens was investigated using a pin-on-disc abrasion test apparatus where the sample slid against different SiC abrasives under the loads of 2 and 5?N at the room conditions. The orthogonal array, signal-to-noise ratio and analysis of variance were employed to find out the optimal testing parameters. The test results showed that particle size of reinforcement was found to be the most effective factor among the other control parameters on abrasive wear, followed by abrasive grain size. Moreover, the optimal combination of the testing parameters was determined and predicted. The predicted wear rate results were compared with experimental results and found to be quite reliable.  相似文献   

9.
Abrasive wear of cast aluminium alloy-zircon particle composites   总被引:1,自引:0,他引:1  
The abrasive wear rates of particulate composites of an Al-11.8Si-4Mg alloy containing up to 0.35 volume fraction of zircon particles (average size, 100 μm) were measured on an 80 grit aloxide cloth sheet as a function of the volume fraction of zircon, the applied load and the number of passes over the abrasive paper. When the volume fraction of zircon is above a critical value of 0.09, the abrasive wear resistance (reciprocal of the wear rate) increases with the volume fraction of zircon according to the rule of mixtures. When the volume fraction is fixed, the abrasive wear resistance increases with the number of passes possibly because of blunting of the alumina particles of the abrasive cloth. No improvement in the abrasive wear resistance of composites over the matrix alloy was observed when the volume fraction of zircon was below 0.09. Scanning electron microscopy studies of the abraded surfaces of composites revealed fractured zircon particles but no evidence of filler particle pull-outs or debonding at the interface was obtained.  相似文献   

10.
In the present work, a detailed study of ceramic reinforcement of different size ranges in the matrix of LM13 alloy on the friction and wear behavior has been carried out. For this purpose, LM13/Zr composite containing 10 wt% zircon sand particles of different size ranges using stir casting process has been developed. Zircon sand particles were incorporated in two ways: firstly as single size reinforcement and secondly dual size reinforcement. Durability of the composites was tested by finding the wear rate of the composite against the steel disk by pin-on-disk method. Addition of zircon sand particles in the LM13 alloy improves the hardness of the composite as well as wear resistance. Wear rate of the developed composites was tested under different test conditions by varying the applied load and ambient temperatures. Wear rate of the composite changes significantly at different ambient temperatures. SEM analysis of the worn surfaces was done to know the operative wear mechanism.  相似文献   

11.
《Wear》2002,252(3-4):250-263
An attempt has been made in this investigation to assess the contribution of various parameters towards governing the abrasive wear response of a zinc-based alloy under the conditions of varying applied loads and sliding distances. The factors whose contribution has been examined include deterioration in the cutting efficiency of the abrasive medium, role played by the SiC particles (dispersed in the alloy matrix) in terms of their degradation and resistance offered by them against the destructive action of the abrasive, subsurface hardening of the matrix and such other related aspects. Four types of abrasion tests were conducted on the samples to achieve the goal. The (abrasion) tests involved the use of (i) fresh as well as preworn surfaces of the samples and (ii) fresh and degraded abrasive media in four different combinations.The study suggests that the mentioned factors contribute to a varying degree towards controlling the (high-stress) abrasive wear behaviour of the specimens. However, degradation in the cutting efficiency of the abrasive medium (through capping, clogging, attrition and shelling) dominates over the influence of other parameters such as abrasion induced subsurface hardening of the matrix. Reinforcement of the SiC particles in the alloy matrix offered improved wear resistance (inverse of wear rate) under less severe conditions such as at low applied loads, wherein the dispersoid (SiC) particles could be retained by the matrix due to low cutting depths made by the abrasive particles. The dispersoid particles deteriorated the wear response of the matrix under more severe conditions of abrasion, such as at high loads, because of larger cutting depths causing fracturing and partial removal of the reinforcement (SiC) particles. The observed wear response of the samples has further been substantiated through the characteristics of wear surfaces, debris particles and abrasive medium after testing the matrix alloy and composite in a typical test condition expected to affect the abrasive medium and test specimens to the largest extent.  相似文献   

12.
R.N. Rao  S. Das  D.P. Mondal  G. Dixit 《Wear》2009,267(9-10):1688-1695
This paper describes the results of dry sliding wear tests of aluminium alloy (Al–Zn–Mg) and aluminium (Al–Zn–Mg)–10, 15 and 25 wt.% SiCp composite was examined under varying applied pressure (0.2 to 2.0 MPa) at a fixed sliding speed of 3.35 m/s. The sliding wear behaviour was studied using pin-on-disc apparatus against EN32 steel counter surface, giving emphasis on the parameters such as coefficient of friction, rise in temperature, wear and seizure resistance as a function of sliding distance and applied pressure. It was observed that the wear rate of the alloy was noted to be significantly higher than that of the composite and is suppressed further due to addition of silicon carbide particles. The temperature rise near the contacting surfaces and the coefficient of friction followed reversed trend. Detailed studies of wear surfaces and subsurface deformation have been carried out. The wear mechanism was studied through worn surfaces and microscopic examination of the developed wear tracks. The wear mechanism strongly dictated by the formation and stability of oxide layer, mechanically mixed layer (MML) and subsurface deformation and cracking. The overall results indicate that the aluminium alloy–silicon carbide particle composite could be considered as an excellent material where high strength and wear resistance are of prime importance.  相似文献   

13.
Abrasive wear behaviour of laser sintered iron–SiC composites   总被引:1,自引:0,他引:1  
Direct metal laser sintering (DMLS) is one of the popular rapid prototyping technologies for producing metal prototypes and tooling of complex geometry in a short time. However, processing of metal matrix composites (MMCs) by laser sintering is still in infant stage. Thermal cracks and de-bonding of reinforcements are reported while processing MMCs by laser sintering process. There are reports on use of metallic-coated ceramic reinforcements to overcome these problems. The present investigation is aimed at using nickel-coated SiC in developing iron composites by DMLS technique and to characterize its abrasive wear behaviour.Microstructure, microhardness, and abrasive wear tests have been carried out on both DMLS iron and its composites sintered at a laser scan speed of 100 mm/s. Abrasion wear tests have been carried out using a pin-on-disc type machine. SiC abrasive papers of grit size 60, 80, and 150 having an average particle size of 268, 192, and 93 μm, respectively, have been used. Load was varied between 5 and 25 N in steps of 5, while the sliding distance and sliding velocity of 540 m and 2.5 m/s, respectively was adopted for all the tests. Optical, scanning electron micrograph and surface roughness observation of worn surfaces have been undertaken.An increase in microhardness and a decrease in density of the laser sintered iron–SiC composites was observed with increase in SiC content. The abrasive wear resistance of composites increases with increased content of SiC in iron matrix. For a given grit size of SiC abrasive paper, at all the loads studied, iron–SiC composites exhibit excellent abrasive wear resistance. Increase in abrasive wear was observed with the increase in abrasive particle size.  相似文献   

14.
Micro-abrasion mechanisms of cast CoCrMo in simulated body fluids   总被引:1,自引:0,他引:1  
D. Sun  J.A. Wharton  R.J.K. Wood 《Wear》2009,267(11):1845-1855
The abrasion seen on some of the retrieved CoCrMo hip joints has been reported to be caused by entrained hard particles in vivo. However, little work has been reported on the abrasion mechanisms of CoCrMo alloy in simulated body environments. Therefore, this study covers the mapping of micro-abrasion wear mechanisms of cast CoCrMo induced by third body hard particles under a wide range of abrasive test conditions. This study has a specific focus on covering the possible in vivo wear modes seen on metal-on-metal (MoM) surfaces. Nano-indentation and nano-scratch tests were also employed to further investigate the secondary wear mechanisms—nano-scale material deformation that involved in micro-abrasion processes. This work addresses the potential detrimental effects of third body hard particles in vivo such as increased wear rates (debris generation) and corrosion (metal-ion release). The abrasive wear mechanisms of cast CoCrMo have been investigated under various wear-corrosion conditions employing two abrasives, SiC (4 μm) and Al2O3 (1 μm), in two test solutions, 0.9% NaCl and 25% bovine serum. The specific wear rates, wear mechanisms and transitions between mechanisms are discussed in terms of the abrasive size, volume fraction and the test solutions deployed. The work shows that at high abrasive volume fractions, the presence of protein enhanced the wear loss due to the enhanced particle entrainment, whereas at much lower abrasive volume fractions, protein reduced the wear loss by acting as a boundary lubricant or rolling elements which reduced the abrasivity (load per particle) of the abrasive particles. The abrasive wear rate and wear mechanisms of the CoCrMo are dependent on the nature of the third body abrasives, their entrainment into the contact and the presence of the proteins.  相似文献   

15.
Aluminium alloy matrix reinforced with 15 wt% SiC particles were prepared by powder metallurgy (PM) method. Wear behaviour of the composite was investigated to find out effects of operating variables and hardness in terms of the Taguchi approach, on a pin-on-disc machine and compared with the previous work on the composite produced by liquid metallurgy method [1]. Analysis of variance (ANOVA) was also employed to investigate which design parameters significantly affected the wear behaviour of the composite. The results showed that abrasive grain size exerted the greatest effect on the abrasive wear, followed by the hardness, which supported the previous work, but the percentage contribution was very different. The percentage contributions of the grain size and hardness were about 81.57 and 11.09, respectively. This might be because of production method of PM, particle size, model used by not considering the interaction effects, and testing condition. Moreover, larger particle sizes of the composites showed more wear resistance than those of others. As for the case of earlier work the percentage contributions of the grain size and type of material (hardness) were about 29.90, 17.90, respectively. However, the percentage contribution of interaction of abrasive size and hardness was about 30.90 while interaction of other factors was pooled.  相似文献   

16.
Coarse cemented WC particle (600–900 μm) ceramic-metal composite coatings with a thickness of 1.2–1.5 mm were cladded on 20Ni4Mo steel surfaces using a laser of power 2 kW, diameter 5 mm and traverse speed 4–20 mm s−1. The weight fraction of WC particles was 67 wt%. Compared with the behaviour of cemented WC particles of the same size and ratio in atomic hydrogen welded coating (AHWCs), the WC particles in laser-cladded ceramic-metal coating (LCCCs) show a uniform distribution in the molten zone. The microhardness of WC particles in LCCCs is 13.7–16.2 GPa, and their sizes are almost unchanged, which indicates that little heat damage occurs during laser cladding. The abrasive wear results showed that LCCCs have superior wear resistance to AHWCs. The wear mechanisms for LCCCs and AHWCs are analysed and compared.  相似文献   

17.
In this paper, the friction behaviour and wear mechanism of electroless Ni–P matrix with PTFE and/or SiC particles composite coating are investigated by virtue of ring-on-disk wear machine at a high load of 150 N. The worn surface, wear debris and the composition changes after wear were characterized using scanning electron microscopy (SEM) and energy-dispersive analysis of X-ray (EDAX). By comparison with Ni–P and Ni–P–SiC coatings, the results indicated that the combination of a PTFE-rich mechanical mixed layer (PRMML) formed on the worn surface and hard SiC were responsible for the good tribological properties of the hybrid Ni–P–PTFE–SiC composites at high load. After heat treatment at 400 °C for 1 h, the wear rate of Ni–P matrix composites decreased with corresponding increase in microhardness. During sliding, an obvious decrease in the temperature rise with PTFE addition was attributed to the good anti-friction of PTFE.  相似文献   

18.
The present investigation deals with dry sliding wear characteristics of a zinc-based alloy (ZA 37) with and without Al2O3 particle dispersion over a range of sliding speeds and applied pressures. The matrix alloy has been examined under identical test conditions in order to examine the role played by the second phase alumina particles on wear behaviour. The observed wear behaviour of the samples has been explained in terms of specific characteristics like cracking tendency, lubricating, load bearing and deformability characteristics, and thermal stability of various microconstituents. The nature of predominance of one set of parameters (causing higher wear rate) over the other (producing a reverse effect) was thought to actually control the wear behaviour. Examinations of the characteristic of wear surfaces and subsurface regions also enabled to understand the operating wear mechanism and to substantiate the wear behaviour.At low sliding speed, significantly lower wear rate of the matrix alloy over that of the composite was noticed. This has been attributed to increased microcracking tendency of the composite than the matrix alloy. Reduced wear rate and higher seizure pressure experienced by the composite over that of the matrix alloy at the higher sliding speeds could be explained to be due to enhanced compatibility of matrix alloy with dispersoid phase and greater thermal stability of the composite in view of the presence of the dispersoid. The maximum temperature rise due to frictional heating has been observed to be low in the case of matrix alloy than composite at low speed while the trend reversed at higher speeds. In general, the wear rate and temperature increased with applied pressure and speed. Seizure pressure reduced with increasing speed while the seizure resistance (pressure) of the matrix alloy was more adversely affected by speed than that of the composite.  相似文献   

19.
Effect of heat treatment on the sliding wear behaviour of aluminium alloy hard particle composite was studied under varying applied load and sliding speed, giving emphasis on the parameters such as wear rate, temperature rise, coefficient of friction and seizure pressure. Hardness is improved due to heat treatment irrespective of the material. Maximum hardness is noted when the materials are aged for 6 h. These facts have been discussed on the basis of nature of worn surface produced after wear. In the present investigation, aging time has been varied from 4 to 10 h at a regular increment of 2 h.  相似文献   

20.
A. Ureña  J. Rams  M. Campo  M. Sánchez 《Wear》2009,266(11-12):1128-1136
Dry sliding wear of an AA 6061 alloy reinforced with both modified SiC particles and metal coated carbon fibres has been studied. SiC particles were used to increase the hardness of the composite while short carbon fibres are supposed to act as a solid lubricant. SiC particles were coated with a silica layer deposited through a sol–gel procedure to increase the processability of the composite and to enhance the particle–matrix interfacial resistance. The metallic coatings on carbon fibres were made of copper or nickel phosphorus which was deposited through an electroless process. The metallic coatings favoured the wetting of the fibres during processing and then dissolved in the aluminium matrix forming intermetallic compounds that increased its hardness. Wear behaviour of AA 6061–20%SiC and AA 6061–20%SiC–2%C was compared with that of the composites with the same reinforcement content but using coated particles and fibres. The influence that the modification of the matrix because of the incorporation of coatings on the reinforcements had on the mild wear behaviour was investigated. The wear resistance of the composites increased when carbon fibres were added as secondary reinforcement and when coated reinforcements were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号