首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
 The behavior of non-metallic inclusions in LCAK (low carbon aluminum killed) steel produced by BOF (basic oxygen furnace)-LF (ladle furnace) refining-FTSC (flexible thin slab continuous caster) production route was investigated. The results showed that, LF refining for LCAK steel could decrease the wT[O] significantly, and the inclusions were modified by Ca treatment, which prevented nozzle clogging efficiently. However, owing to the unstable casting condition in the earlier stage of casting, a severe reoxidation occurred, accompanied with mold slag entrapment. The transformation of non-metallic inclusions during the steelmaking process was Al2O3→MgO-Al2O3 type inclusion→MgO-Al2O3-CaO type inclusion with a CaS ring, and the mechanism of the transformation was proposed and discussed via thermodynamic and kinetic analysis. Besides, to avoid CaS precipitation, the product of w2[Al]×w3[S] in steel should be less than 2.0×10-10 at 1873 K, which remands higher desulfurization ratio during LF refining.  相似文献   

2.
The thermodynamic characteristics of desulfurization reaction (CaO)+[S]=(CaS)+[O] is analyzed based on the detailed composition of liquid steel and slag of Steel Plate Hot Commercial (SPHC) in Jiuquan Iron & Steel Corporation(JISC), where the activities of CaO, CaS and Al2O3 in molten slag are calculated by thermodynamic software FactSage for a more accurate result. The critical values of [O%]/[S%] for desulfurization at different temperature is are obtained, typically 0.09 at 1873K, which shows directly that it should deoxidize adequately for obtaining a favorable desulfurization condition. In addition, the thermodynamic analysis indicates that the actual dissolved O is much higher than that of equilibrium calculation which shows Al-O reaction in LF is far away from equilibrium, but it is perfect agreement with the computing results when taking the activity of Al2O3 as 1 that due to the inclusion component in LF is mainly Al2O3. Besides, with the temperature rise, the sulfur partition ratio increases softly meanwhile the reaction between Al and O is limited to a great degree resulting in the increase a dissolved oxygen in liquid steel that decreases the sulfur partition ratio seriously. As a result, the sulfur partition ratio appears to decrease with temperature increase in Al killed steel.  相似文献   

3.
Study on LF Refining Slag and Slagging Regime of High-Aluminium Steel   总被引:1,自引:0,他引:1  
During secondary refining of molten steel, reaction of steel-slag has great influence on the quality of steel. Taking high aluminium steel ([Al]≥0.8%) for instance, reaction control of 4[Al]+3(SiO2) = 2(Al2O3)+3[Si] was discussed by both thermodynamics calculation and industrial experiments. The results show that content of silicon increased sharply when content of SiO2 in slag exceeded 10%. In order to prevent the increment of silicon content and reoxidation for high aluminium steel, reasonable component range of LF refining slag is: %CaO/%Al2O3=1.6-1.9, %SiO2 <10. Results of the industrial experiments indicate that the CaO-Al2O3 based refining slag has strong ability of desulfurization and inclusion absorption. Average desulfurization rate is 80%, and T[O] reduces above 50% after refining, with the average sulfur content and T[O] about 0.0025% and 11×10-6,respectively, which can meet the requirements of secondary refining and obtain good castability of steel in continuous casting process.  相似文献   

4.
The transformation of inclusions was studied when control technology of refining top slag in ladle furnace was used in X80 pipeline steelmaking.Sufficient amount of aluminum was added to experimental heats for final deoxidation during BOF tapping,and then the refining top slag with high basicity and strong reducibility was adopted to transform Al 2 O 3 to inclusions with low melting point.The results show that the composition of inclusions changes in order of "Al 2 O 3 → MgO-Al 2 O 3 system→ CaO-MgO-Al 2 O 3 system→ CaO-Al 2 O 3 system".And the inclusions after LF refining are liquid or semi-liquid state at the temperature of steelmaking,which are easily removable to obtain high cleanliness steel by collision,agglomeration and flotation.  相似文献   

5.
 The influence of calcium treatment on non-metallic inclusions had been studied when control technology of refining top slag in ladle furnace was used in ultra-low oxygen steelmaking. A sufficient amount aluminium was added to experimental heats for final deoxidizing during BOF tapping, and the refining top slag with strong reducibility, high basicity and high Al2O3 in ladle furnace was used to produce ultra-low oxygen steel and the transformation of non-metallic inclusions in molten steel was compared by calcium treatment and no calcium treatment. The results show that the transformation of Al2O3→MgO·Al2O3 spinel→CaO-MgO-Al2O3 complex inclusions has been completed for aluminum deoxidation products and calcium treatment to molten steel is unnecessary when using the control technology of ladle furnace refining top slag to produce ultra-low oxygen steel, and the complex inclusions are liquid at the temperature of steelmaking and easily removable to obtain very high cleanliness steel by flotation. Furthermore, the problems of nozzle clogging in casting operations do not happen and the remaining oxide inclusions in steel are the relatively lower melting point complex inclusions.  相似文献   

6.
  In the electric arc furnace (EAF) steel production processes, scrap steel is principally used as a raw material instead of iron ore. In the steelmaking process with EAF, scrap is first melted in the furnace and then the desired chemical composition of the steel can be obtained in a special furnace such as ladle furnace (LF). This kind of furnace process is used for the secondary refining of alloy steel. LF furnace offers strong heating fluxes and enables precise temperature control, thereby allowing for the addition of desired amounts of various alloying elements. It also provides outstanding desulfurization at high temperature treatment by reducing molten steel fluxes and removing deoxidation products. Elemental analysis with mass balance modeling is important to know the precise amount of required alloys for the LF input with respect to scrap composition. In present study, chemical reactions with mass conservation law in EAF and LF were modeled altogether as a whole system and chemical compositions of the final steel alloy output can be obtained precisely according to different scrap compositions, alloying elements ratios, and other input amounts. Besides, it was found that the mass efficiency for iron element in the system is 9593%. These efficiencies are calculated for all input elements as 845% for C, 3031% for Si, 4636% for Mn, 3064% for P, 4196% for S, and 6979% for Cr, etc. These efficiencies provide valuable ideas about the amount of the input materials that are vanished or combusted for 100 kg of each of the input materials in the EAF and LF system.  相似文献   

7.
Based on the fact of long period deep desulfurization treatment in LF,the relationships among top slag constituent in LF,molten steel constituent,stirring ability of blowing argon,molten steel temperature and desulphurization rate were analyzed.Through the experiments,the parameters about treatment technology of top slag in LF,the [Als] content in molten steel,slag charge match,molten steel temperature and the argon flow for stirring have been optimized.The desulphurization treatment period in LF can be shortened by 5~8 minutes.The target sulfur content in molten steel can be controlled below 30 ppm within one LF treatment period which is only 36 minutes.The LF treatment period of ultra-low sulfur steel can primarily match with the continuous casting period,multi-heat continuous casting can be ensured.  相似文献   

8.
Desulfurization performance with low binary basicity refining slag in 72 grade tire cord steel was calculated using FactSage and it is found that sulfur content in steel decreases with the increase of basicity of slag, MgO content in slag and slag/steel ratio while sulfur partition ratio between slag and steel increases gradually with the increase of basicity of slag as well as MgO content. Experiments were carried out and the results are of great agreements with theoretical calculation. Then industrial application tests were performed in a domestic plant and good results were achieved. Sulfur content in steel decreases gradually during refining process, as a result, sulfur content in the billets is controlled in the range of 0.007 1%-0.008 1%. Sulfur content in steel refined with slag basicity of 1.21 is lower than that of 1.02, while the plasticity of oxide compound inclusions is a little better controlled in low basicity heats. Using refining slag with basicity of 1.0-1.2 and MgO content of 5%-10% and reducing the slag takeover of LD are favorable for improving the desulfurization performance and the plasticity of inclusions during the industrial production.  相似文献   

9.
Population density function(PDF),which can eliminate the arbitrariness caused by the choice of the number and the size of bins compared to the well-used histograms,was introduced to analyze the amount of inclusions.The population evolution of oxide inclusions in forms of PDF in Ti-stabilized ultra-low carbon steels after deoxidation during industrial RH refining and continuous casting processes was analyzed using an automated SEM-EDS system.It was found that after deoxidation till the early stage of casting,the alumina inclusions exhibited a lognormal PDF distribution,and three factors including the existence of a large amount of alumina clusters,the generation of alumina from the reduction of Al-Ti-O inclusions and the reoxidation of molten steel were estimated as the reasons.The shape parameterσwas high after deoxidation and then decreased after Ti treatment,indicating that in a short period after deoxidation,the size of alumina inclusions was widely distributed.After Ti treatment,the distribution of inclusion size was more concentrated.The scale parameter mdecreased with time during the whole refining process,indicating that the proportion of large inclusions decreased during refining.Contrarily,the Al-Ti-O inclusions presented a fractal PDF distribution except at the end of casting with fractal dimension Dof 4.3,and the constant of proportionality C decreased with time during RH refining and increased during casting process.The reoxidation of steel by slag entrapped from ladle was considered as the reason for the lognormal PDF behavior of Al-Ti-O inclusions at the end of casting.  相似文献   

10.
The effect of pre-melting refining slag containing different contents of Ce2O3 on the absorption and modification of Al2O3 inclusion in an Al-killed steel was investigated through the slag/steel reaction experiment at 1600 oC.It was found that the replacement of 10 wt.% Al2O3 with Ce2O3 for 50 wt.%CaO-33 wt.%Al2O3-7 wt.%MgO-10 wt.%SiO2 refining slag promoted the slag absorption ability of alumina inclusion,which made the total oxygen content determined by infrared absorption method decrease from 100 to 25 ppm in 15 min.The Mg-Al-Ce-O type inclusion was also detected in the as-solidified samples by scanning electron microscopy(SEM).Thermodynamic analysis indicated that the Ce2O3.Al2O3 type inclusions would be formed with the cerium content in the range of 6.9 ppb to 3.6 ppm when the content of aluminum was 0.01 wt.%.  相似文献   

11.
摘要:为有效控制30Cr1Mo1V汽轮机转子钢中非金属夹杂物和有害杂质元素含量,利用热力学软件FactSage 8.1,计算了1873K下CaO-SiO2-Al2O3-5%MgO系精炼渣与30Cr1Mo1V钢液平衡时的等[O]线、等[S]线,以获得最优精炼渣成分范围。研究了不同精炼渣对钢中氧、硫含量,夹杂物特性的影响,继而揭示了钢中典型MgO·Al2O3夹杂物的热力学形成机制以及夹杂物与精炼渣之间的成分关系,并构建了“钢 渣”界面MgO·Al2O3夹杂物运动模型。实验和模型结果表明,优化渣系50.4%CaO-40-3%Al2O3-4.3%SiO2-5%MgO对钢液脱氧、脱硫和非金属夹杂物控制的效果明显,模型预测结果与夹杂物去除率对应关系良好。  相似文献   

12.
Steel plate cold common (SPCC) is a Al-killed steel with Ca-treatment. The control of Al2O3 inclusion into low melting point liquid region is beneficial for inclusion removal, cast-ability promotion and defects reduction during rolling. Thus it is essential to understand steel-inclusion equilibrium since inclusion composition is determined by composition of liquid steel directly through steel-inclusion reaction. Thermodynamic calculation software FactSage is performed to understand how to control inclusion composition during ladle furnace (LF) refining, and industrial trials are carried out to verify calculated results. Firstly, target region for controlling CaO-Al2O3-MgO ternary inclusion is analyzed on the basis of the ternary phase diagram and the relationship between activities related to pure solid and activities related to pure liquid was fixed by thermodynamic analysis in order to obtain reliable activities for components of inclusions in the target region by FactSage. In addition, inclusions in steel samples are detected by scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS). It is found that most of Al2O3 inclusions are modified into lower melting point region but a number of them are still located in high melting point region at the end of LF refining after Ca-treatment. Moreover, the composition of liquid steel equilibrating with liquid CaO-Al2O3-MgO inclusion is obtained by steel-inclusion equilibrium calculation when w[Al]s is approximating 0.03% as: a[O] is 1.0×10-6 to 4.0×10-6, w[Ca] is 20×10-6 to 50×10-6 and w[Mg] is 0.1×10-6 to 3.0×10-6. At last, stability diagrams of various calcium aluminates and CaS are established and they show that liquid calcium aluminate inclusions form when w[Ca] is more than 20×10-6, but CaS precipitation is difficult to prevent because sufficiently low w[S] (<0.003%) is required.  相似文献   

13.
杨俊  王新华 《钢铁》2011,46(7):26-31
 对超低氧试验钢精炼过程中镁铝尖晶石的形成机制和生成热力学计算分析表明:1873K时,MgO-Al2O3二元系夹杂物中MgO的质量分数超过17%时就能生成镁铝尖晶石;采用高碱度、w((CaO))/w((Al2O3))≈1、强还原性精炼顶渣对铝终脱氧钢液进行LF精炼时,在LF精炼中前期就实现Al2O3向MgO·Al2O3尖晶石的转变;钢液中的镁则是实现Al2O3向MgO·Al2O3尖晶石转变的中介和桥梁。而钢中镁含量是由酸溶铝控制的。因此,保持钢液中足够的铝含量是镁铝尖晶石生成的前提。生产过程中,当钢液的w([Al])达到0.03%时,w([Mg])只需要1.32×10-7以上就能生成MgO·Al2O3尖晶石。  相似文献   

14.
 为了实现LF热态钢渣的循环利用,对目前武钢LF热态钢渣两次循环利用工艺中精炼渣的组成、脱硫能力及吸收夹杂能力的变化进行了分析研究。结果表明,LF热态钢渣循环利用后钢水的脱硫率可以达到90%以上,精炼终点w([S])可以达到0.001%的水平;相对于未循环工艺,钢中w(T[O])减少17.50×10-6,w([N])减少17.00×10-6,夹杂物数量减少4.47个/mm2。根据两次热循环利用结果得出:通过控制回收的渣量及补加石灰的量,可保证循环后初始炉渣中的w((S))小于0.20%,终渣碱度(w(CaO)/w(SiO2))在12.00~20.00范围,w(CaO)/w(Al2O3)为1.75~2.00,从而使精炼渣的脱硫效率、w((S))/w([S])不受循环次数的限制。  相似文献   

15.
耿克  由梅 《特殊钢》2001,22(1):36-39
在UHPEAF-LF-VD-IC轴承钢的生产线上,对影响轴承钢氧含量的主要因素如脱氧剂、脱氧方式、精炼炉渣、温度制度、吹氩强度等进行了探讨,用改进的工艺可使轴承钢[O]≤11×10  相似文献   

16.
 根据冶金熔体的共存理论,计算了CaO-MgO-MnO-FeO-SiO2-Al2O3六元渣系各组元的作用浓度。结合生产实际数据,建立了LF精炼过程中精炼渣成分和w[Al]之间氧化还原反应的数学模型,计算了精炼渣成分对w[Al]的影响。结果表明,LF精炼过程中w[Al]受w[Si]、w(FeO)联合控制。低碱度、低Al2O3含量的精炼渣对控制w[Al]有利,如果精炼渣碱度控制在0. 9,Al2O3含量(质量分数,下同)控制在3%以下,则可以将w[Al]控制在6×10-6以下。适当提高FeO含量有利于降低w[Al]。  相似文献   

17.
杜松林  高振波  李颂  梁海庆  包燕平 《钢铁》2007,42(2):18-20,38
硅镇静钢及少量铝脱氧的钢在LF处理过程中会发生钢水中铝含量增加以及夹杂物组成改变的现象.通过理论计算和工业生产实践研究了不同的渣系、钢水成分、处理时间等对LF精炼过程增铝的影响,不同精炼渣系下钢中夹杂的组成,结果表明采用CaO-SiO2渣系LF处理过程几乎不发生增铝现象,而采用CaO-Al2O3渣系随着处理时间的延长以及钢种成分的区别,钢中铝有不同程度的增加,生产实践结果与理论计算趋势基本一致.采用CaO-Al2O3渣系精炼与CaO-SiO2渣系相比,钢中Al2O3夹杂数增加4倍,氧化物复合夹杂中w(Al2O3)提高113%,w(CaO)提高24.5%.在帘线钢72A以及HRB400、SS400钢的生产实践中加以应用,使得LF处理后72A的w(Al)小于0.000 5%,HRB400、SS400的小于0.003%,避免了有害夹杂物的形成,消除了在小方坯连铸过程中的水口堵塞现象.  相似文献   

18.
程子建  郭靖  程树森 《钢铁》2012,47(10):45-51
 利用热力学计算软件FactSage确定了精炼渣中MgO质量分数合理范围为4%~8%,以6%最佳。由工业取样结果结合FactSage分析了1873K时SiO2-CaO-Al2O3-6%MgO准三元系液相区及CaO饱和的固液两相区渣-钢平衡。结果表明:高碱度高w(CaO)/w(Al2O3)(C/A)精炼渣有利于钢液的低氧低硫和低硅控制,但并非造得越“白”越好,相反过高的CaO对脱氧和硅含量控制不利。通过钢渣平衡分析得到了酒钢SPCC精炼渣优化成分范围(质量分数)为:CaO为50%~55%,Al2O3为30%~36%,SiO2为1%~6%,MgO为4%~8%,6%为最佳,碱度为9.0~14.0,w(CaO)/w(Al2O3)为1.5~1.8,实验室渣-钢平衡试验和工业生产结果均验证了优化的渣系较原渣系精炼效果更加优越,能够同时降低钢中总氧、硫和硅含量,也能有效控制钢中夹杂物的成分。  相似文献   

19.
李玮  宋波 《冶金丛刊》2013,(6):25-29
介绍了承钢120t系统对钢中酸溶铝没有要求钢种的LF炉无铝脱氧实践。精炼过程中采用硅钙钡、硅钙粉、电石、碳化硅等对钢水进行无铝脱氧工艺,减少了钢水中的Als和Al2O3,精炼过程中加入Al2O3含量较低的精炼渣系,提高炉渣碱度,降低SiO2的活度,大幅提高硅的脱氧能力;优化钙处理工艺,对钢水进行深脱氧,通过夹杂物变性控制夹杂物的形态和尺寸。实践证明,对钢中酸溶铝没有要求的钢种采用无铝脱氧工艺后,没有降低钢水质量,提高了钢水可浇性,吨钢精炼费用降低2.96元/t。  相似文献   

20.
转炉—RH—连铸工艺生产高压气瓶用钢洁净度的研究   总被引:4,自引:0,他引:4  
对转炉— RH精炼—连铸工艺生产高压气瓶用钢 T[O]变化及非金属夹杂物进行研究的结果表明 ,在转炉出钢过程由于炉渣与脱氧产物作用生成的粗大球状夹杂物及铝脱氧生成的大尺寸 Al2 O3簇群状夹杂物绝大多数可由钢液排除 ,铸坯中存在的夹杂物主要是较小的块状和簇群状 Al2 O3及少量由于结晶器保护渣卷入造成的球状夹杂物。 RH精炼后钢液 T[O]在 (2 8~ 34 )× 10 - 6 之间 ,中间包钢水 T[O]在 (2 4~ 2 6 )× 10 - 6之间 ,铸坯 T[O]在 (12~ 19)× 10 - 6 之间 ,该工艺生产的气瓶用钢具有很高的洁净度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号