首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Integrated water resources management is a paradigm that incorporates technical, scientific, political, legislative and organizational aspects of a water system. This study presents a methodology for undertaking an integrated analysis of water systems supplied by groundwater. This methodology is here applied to examine the water system of the Altiplano region in Murcia, where the water extraction from the aquifers greatly exceeds recharge and the irrigated areas supplied by those aquifers have a very high agrarian profitability. First, the hydrological problematic of the case study was conceptualized. Then, a sectorial study on each aspect related to the water management of the system was developed. As Bayesian Networks was the chosen technique for the integrated analysis, the information obtained by the sectorial studies was translated into specific variables, which together with the relations among them, modelled the real situation. As from a hydrogeological point of view the water system is comprised of four autonomous aquifers, a Bayesian Network for every aquifer was designed. This decision-support system enables us to evaluate the impacts generated under diverse water management scenarios.  相似文献   

2.
This paper describes the development of a Decision Support System (DSS) for groundwater management of the ‘Zeuss Koutine’ aquifer in southeastern Tunisia using the WEAP-MODFLOW framework. First, a monthly MODFLOW model was developed to simulate the behaviour of the studied aquifer. A conceptual model of the study area was designed and a WEAP schematic representing the real hydraulic system was developed. In addition to the studied aquifer, other water resources available in the region, such as desalination plants and groundwater, were taken into consideration in this DSS. Inputs to the hydrogeological model include natural recharge and inflow from higher neighbouring aquifers. Outputs are mainly agricultural, touristic and urban water consumption. It was shown that the DSS developed was able to evaluate water management scenarios up to 2030, especially future water consumption, transmission link flow and active cell heads of the MODFLOW model for each time step. Results for the Zeuss Koutine aquifer demonstrated that desalination plants already built in the cities of Jerba and Zarzis have contributed to decreasing the continuous drawdown observed before 1999. The use of a sea water desalination plant to supply Jerba and Zarzis in the future is a solution for reducing the Zeuss Koutine aquifer drawdown. Defining its optimal capacity over time poses a new research question.  相似文献   

3.
A Cost-Effective Method to Control Seawater Intrusion in Coastal Aquifers   总被引:5,自引:1,他引:4  
Intrusion of seawater into coastal aquifers is considered one of the most important processes that degrade water-quality by raising the salinity to levels exceeding acceptable drinking standards. Therefore saltwater intrusion should be prevented or at least controlled to protect groundwater resources. This paper presents a cost-effective method to control seawater intrusion in coastal aquifers. This methodology ADR (Abstraction, Desalination and Recharge) includes; abstraction of saline water and recharge to the aquifer after desalination. A coupled transient density-dependent finite element model is developed for simulation of fluid flow and solute transport and used to simulate seawater intrusion. The simulation model has been integrated with an optimization model to examine three scenarios to control seawater intrusion including; abstraction, recharge and a combination system, ADR. The main objectives of the models are to determine the optimal depths, locations and abstraction/recharge rates for the wells to minimize the total costs for construction and operation as well as salt concentrations in the aquifer. A comparison between the combined system (ADR) and the individual abstraction or recharge system is made in terms of total cost and total salt concentration in the aquifer and the amount of repulsion of seawater achieved. The results show that the proposed ADR system performs significantly better than using abstraction or recharge wells alone as it gives the least cost and least salt concentration in the aquifer. ADR is considered an effective tool to control seawater intrusion and can be applied in areas where there is a risk of seawater intrusion.  相似文献   

4.
The control of groundwater abstraction from coastal aquifers is typically aimed at minimizing the risk of seawater intrusion, excessive storage depletion and adverse impacts on groundwater-dependent ecosystems. Published approaches to the operational management of groundwater abstraction from regulated coastal aquifers comprise elements of “trigger-level management” and “flux-based management”. Trigger-level management relies on measured groundwater levels, groundwater salinities and/or ecosystem health indicators, which are compared to objective values (trigger levels), thereby invoking management responses (e.g. pumping cut-backs). Flux-based management apportions groundwater abstraction rates based on estimates of aquifer recharge and discharge (including environmental water requirements). This paper offers a critical evaluation of coastal aquifer management paradigms using published coastal aquifer case studies combined with a simple evaluation of the Uley South coastal aquifer, South Australia. There is evidence that trigger-level management offers advantages over flux-based approaches through the evaluation of real-time resource conditions and trends, allowing for management responses aimed at protecting against water quality deterioration and excessive storage depletion. However, flux-based approaches are critical for planning purposes, and are required to predict aquifer responses to climatic and pumping stresses. A simplified modelling analysis of the Uley South basin responses to different management strategies demonstrates the advantages of considering a hybrid management approach that includes both trigger-level and flux-based controls. It is recommended that where possible, trigger-level and flux-based approaches be adopted conjunctively to minimize the risk of coastal groundwater degradation and to underpin strategies for future aquifer management and well-field operation.  相似文献   

5.
Groundwater is the main water resource in many semi-arid coastal regions and water demand, especially in summer months, can be very high. Groundwater withdrawal for meeting this demand often causes seawater intrusion and degradation of water quality of coastal aquifers. In order to satisfy demand, a combined management plan is proposed and is under consideration for the island of Santorini. The plan involves: (1) desalinization (if needed) of pumped water to a potable level using reverse osmosis and (2) injection into the aquifer of biologically-treated waste water. The management plan is formulated in a multi-objective, optimization framework, where simultaneous minimization of economic and environmental costs is desired, subject to a constraint so that cleaned water satisfies demand. The decision variables concern the well locations and the corresponding pumping and recharging rates. The problem is solved using a computationally efficient, multi-objective, genetic algorithm (NSGAII). The constrained multi-objective, optimization problem is transformed to an unconstrained one using a penalty function proportional to constraint violation. This extends the definition of the objective function outside the domain of feasibility. The impact of prolonged droughts on coastal aquifers is investigated by assuming various scenarios of reduced groundwater recharge. Water flow and quality in the coastal aquifer is simulated using a three-dimensional, variable density, finite difference model (SEAWAT). The method is initially applied to a test aquifer and the trade-off curves (Pareto fronts) are determinedl for each drought scenario. The trade-off curves indicate an increase on the economic and environmental cost as groundwater recharge reduces due to climate change.  相似文献   

6.
为了进一步计算评估滨海深部含水层地下水排泄量,以一个海底深部承压含水层系统为例,包括承压含水层及上覆弱透水含水层(海底),在内陆补给上考虑了与时间无关的年平均补给(常数)和由季节性降雨引起的周期性补给两种情况,从而建立了一个描述承压含水层中海底地下水排泄的数学模型,并得到其解析解。继而利用解析解分析了位于美国南大西洋Onslow海湾的SGD。结果显示,SGD排泄宽度变化范围为0.5~3.0 km,在承压含水层中海岸线处高于平均海平面1.0 m的水头值,其所产生的SGD速率为1.1~10.0 m2/d。  相似文献   

7.
In Saudi Arabia, the recharge to local and regional aquifers is mostly indirect, very limited and insignificant, especially with low annual precipitation. Most of the stored groundwater in local and regional aquifers is non-renewable fossil water. With rapid socio-economic developments and increasing population coupled with agricultural and industrial growth in the Kingdom, especially after the large increase in oil revenues after 1974, the water demands have increased drastically. By understanding the aquifer features, the country followed a planned approach based on controlling aquifer development and demand management to use its groundwater resources. The socio-economic developments in rural areas have been very pronounced. Corrective demand management measures including reduction in cultivated areas and modification in agricultural support policies in addition to the augmentation of water supplies by the reuse of treated wastewater have reduced the stress on groundwater. The establishment of a special Ministry for water and the adoption of a national water planning approach and the use of an integrated water resources management tool are expected to contribute effectively to the achievement of sustainable groundwater resources and the national interest of the country.  相似文献   

8.

Saltwater intrusion into coastal aquifers has become a prominent environmental concern worldwide. As such, there is a need to prepare and implement proper remediation techniques with careful planning of freshwater withdrawal systems for controlling saltwater intrusion in coastal marine and estuarine environments. This paper investigates the performance of groundwater circulation well (GCW) in controlling saltwater intrusion problems in unconfined coastal aquifers. The GCWs have been established as a promising in-situ remedial technique of contaminated groundwater. The GCW system creates vertical circulation flow by extracting groundwater from an aquifer through a screen in a single well and injecting back into the aquifer through another screen. The circulation flow induced by GCW force water in a circular pattern between abstraction and recharge screens and can be as a hydraulic barrier for controlling saltwater intrusion problem in coastal aquifers. In this study, an effort has been made to investigate the behavior of saltwater intrusion dynamics under a GCW. An experiment has been conducted in a laboratory-scale flow tank model under constant water head boundary conditions, and the variable-density flow and transport model FEMWATER is used to simulate the flow and transport processes for the experimental setup. The evaluation of the results indicates that there is no further movement of saltwater intrusion wedge towards the inland side upon implementation of GCW, and the GCW acts as a hydraulic barrier in controlling saltwater intrusion in coastal aquifers. The present study reveals the GCWs system can effectively mitigate the saltwater intrusion problem in coastal regions and could be considered as one of the most efficient management strategies for controlling the problem.

  相似文献   

9.

Groundwater is a primary source of drinking water in the Mediterranean, however, climate variability in conjunction with mismanagement renders it vulnerable to depletion. Spatiotemporal studies of groundwater recharge are the basis to develop strategies against this phenomenon. In this study, groundwater recharge was spatiotemporally quantified using the Soil and Water Assessment Tool (SWAT) in one coastal and one inland hydrological basin in Greece. A double calibration/validation (CV) procedure using streamflow data and MODIS ET was conducted for the inland basin of Mouriki, whereas only ET values were used in the coastal basin of Anthemountas. Calibration and simulation recharge were accurate in both sites according to statistical indicators and previous studies. In Mouriki basin, mean recharge and runoff were estimated as 16% and 9%, respectively. In Anthemountas basin recharge to the shallow aquifer and surface runoff were estimated as 12% and 16%, respectively. According to the predicted RCP 4.5 and 8.5 scenarios, significant variations in groundwater recharge are predicted in the coastal zone for the period 2020–2040 with average annual recharges decreasing by 30% (RCP 4.5) and 25% (RCP 8.5). Variations in groundwater recharge in the inland catchment of Mouriki were insignificant for the simulated period. Anthemountas basin was characterized by higher runoff rates. Groundwater management in coastal aquifers should include detailed monitoring of hydrological parameters, reinforced groundwater recharge during winter and reduced groundwater abstraction during summer depending on the spatiotemporal distribution of groundwater recharge.

  相似文献   

10.
Combined simulation-optimization approaches have been used as tools to derive optimal groundwater management strategies to maintain or improve water quality in contaminated or other aquifers. Surrogate models based on neural networks, regression models, support vector machies etc., are used as substitutes for the numerical simulation model in order to reduce the computational burden on the simulation-optimization approach. However, the groundwater flow and transport system itself being characterized by uncertain parameters, using a deterministic surrogate model to substitute it is a gross and unrealistic approximation of the system. Till date, few studies have considered stochastic surrogate modeling to develop groundwater management methodologies. In this study, we utilize genetic programming (GP) based ensemble surrogate models to characterize coastal aquifer water quality responses to pumping, under parameter uncertainty. These surrogates are then coupled with multiple realization optimization for the stochastic and robust optimization of groundwater management in coastal aquifers. The key novelty in the proposed approach is the capability to capture the uncertainty in the physical system, to a certain extent, in the ensemble of surrogate models and using it to constrain the optimization search to derive robust optimal solutions. Uncertainties in hydraulic conductivity and the annual aquifer recharge are incorporated in this study. The results obtained indicate that the methodology is capable of developing reliable and robust strategies for groundwater management.  相似文献   

11.
The purpose of the study is to demonstrate that cross-correlation analyses can contribute to the artificial recharge study in regional level of shallow aquifer. Correlations between hydrologic time series data were analyzed to identify the hydrogeologic location for potential artificial recharge in district Surat, Gujrat, India. The natural groundwater-level fluctuations and rainfall data were used for the analyses. The effective development of groundwater resources is essential for a country like India. India receives a good amount of average annual rainfall (114?cm) but most of its part goes waste as runoff. Over exploitation of groundwater due to increasing population is an additional cause of water crisis that results in the reduction in per capita availability of water in the country. Artificial recharge is essential for effective development of groundwater resources. An effort has been made to evaluate the suitable recharge zone considering rainfall by arresting runoff to restore groundwater conditions using a statistical technique. Groundwater system in a basaltic terrain where the top weathered regolith forms shallow aquifer the water table variation is directly influenced with temporal rainfall variation. Understanding of this relation is of critical importance to management of groundwater resources. A diagnostic relationship between recharge time series and water level time series is used to serve the purpose to determine the best site for groundwater recharge.  相似文献   

12.
Rachid  G.  Alameddine  I.  El-Fadel  M. 《Water Resources Management》2021,35(15):5139-5153

Coastal aquifers are vulnerable to saltwater intrusion (SWI) due to several drivers particularly increased water demand and groundwater overexploitation associated with population growth, reduced groundwater recharge, and lately climate change. This study examines the status of SWI in four data scarce coastal aquifers located along the Eastern Mediterranean by assessing how water cycle seasonality, water deficits, and changes in land use and land cover (LULC) have contributed to increased salinity. A framework that combines field monitoring with hydro-geochemical techniques, as well as multivariate and inferential statistical analysis was used to identify the main SWI drivers at play at each aquifer. The overall assessment showed that all four pilot areas exhibited signs of salinization with different severities. The current state of the aquifers ranged from slightly saline (TDS < 1500 ppm) to highly saline (15,000 < TDS < 31,000 ppm). While the level of the SWI was significantly correlated to the dominant land uses at each site, the extent of the water deficit played a dominant role in explaining the occurrence and intensity of observed SWI rates. The findings suggest a synergistic effect between increased water deficits and urbanization and SWI. Site specific measures are discussed for mitigating the impacts of land use, water demand and deficit towards the sustainable management of the groundwater aquifers.

  相似文献   

13.
In the densely populated coastal regions of the world, loss of groundwater due to seawater intrusion, driven by changes of climate, sea level, land use and water use, may critically impact many people. We analytically investigate and quantify the limits constraining a coastal aquifer’s sustainable management space, in order to avoid critical loss of the coastal groundwater resource by seawater intrusion. Limiting conditions occur when the intrusion toe reaches the pumping wells, well intrusion, or the marine-side groundwater divide, complete intrusion; in both cases the limits are functions of the seaward groundwater flow remaining after the human groundwater extractions. The study presents a screening-level approach to the quantification of the key natural and human-determined controls and sustainability limits for the human use of coastal groundwater. The physical and geometrical characteristics of the coastal aquifer along with the natural conditions for recharge and replenishment of the coastal groundwater are the key natural controls of the sustainable management space for the latter. The groundwater pumping rates and locations are the key human-determined controls of this space. The present approach to combining and accounting for both of these types of controls is simple, yet general. The approach is applicable across different scales and regions, and for historic, current and projected future conditions of changing hydro-climate, sea level, and human freshwater use. The use of this approach is also concretely demonstrated for the natural and human-determined controls and limits of the sustainable management space for two specific Mediterranean aquifers.  相似文献   

14.
Optimal Locations of Groundwater Extractions in Coastal Aquifers   总被引:1,自引:0,他引:1  
A regional water supply management model for coastal aquifers was developed. One of its outcomes is the definition of the optimized locations for groundwater withdrawal. Such a tool permits the analysis of alternative plans for groundwater extraction and the sustainable use of water resources in a coastal aquifer subject to saltwater intrusion. The principal components are the evolutionary optimization and the analytical/numerical simulation models. The optimization technique looks for the best well locations taking into consideration the economic results and the satisfaction of the societal water demand. However these two concerns are conditioned by trying to control the saltwater intrusion, i.e., preserving the environmental equilibrium. The simulation model uses the governing mathematical equations for groundwater movement to find the interface between freshwater and saltwater. Because of the non-linearity in the system and the possibility of a jumping interface, a security distance was defined. This is a controlling variable which can be set by the decision makers. The model was applied to a typical case with interesting results. For example, diagrams showing the relationship between the location of the wells and the security distance(s) are of importance to the managers. It was also crucial to have an understanding of the tradeoffs between groundwater withdrawals, positions of the wells from the coast line, and the security distance. The model was also applied to a real case in order to relate the extractions, distances and artificial recharge (not presented in this paper).  相似文献   

15.
In water limited areas as water demand increases alternative sustainable water sources must be identified. One supply augmentation practice, that is already being applied in the arid southwest U.S., is artificial groundwater recharge usingwastewater effluent. The objective of a recharge facility is to supplement the available groundwater resources by storing water for the future. The resulting reclaimed water is used primarily for non-potable purposes but under increasing stressesshifting to potable use is likely to happen. Water quality thenbecomes a more pressing concern. Water quality improvements during infiltration and groundwater transport are significant and are collectively described as soil-aquifer treatment (SAT). To meet user needs, the recharge operation must be efficiently managed considering monetary, water quality and environmental concerns. In this paper, a SAT management model is developed that considers all of these concerns. Within the SAT management model, the shuffled complex evolution algorithm (SCE) is used as the optimization tool. SCEis a relatively new meta-heuristic search technique for continuousproblems that has been used extensively for hydrologic model calibration. In this application, SCE is integrated with the simulation models (MODFLOW, MT3D, and MODPATH) to represent movement and quality transformations. Two steady state case studies on a general hypothetical aquifer (modeled after a field site) were examined using the management model.  相似文献   

16.
为实现石川河地下水位的有效回升进而维持采补平衡,需在该区实施地下水人工补给工程,并确定合理的 补给位置及有效的补给方式。选取地下水埋深、坡度、含水层厚度、含水层渗透系数、与环境敏感区距离和给水 度 6 个指标,运用空间分析技术对人工补给地下水地点适宜性进行评价;在此基础上建立三维地质模型分析典型 人工补给潜力区的地层结构,探索可行的地下水人工补给方式。结果表明:适宜进行人工补给的高潜力和较高潜 力区域主要分布在研究区中部及东南部,面积达 48.01?km2,占研究区总面积的 32.0%。建议:在石川河河道中上 游高潜力和较高潜力区域的北部修建地表入渗池或渗坑;在河道中上游高潜力和较高潜力区域南部和河道中下 游的较高潜力区域布设反滤回灌井群;可沿石川河河道中上游高潜力与较高潜力区域之间布置一条长约 4.5?km 的渗渠,利用河道进行入渗补给。研究结果可为地下水库的修建提供参考。  相似文献   

17.
Forecasting the ground water level fluctuations is an important requirement for planning conjunctive use in any basin. This paper reports a research study that investigates the potential of artificial neural network technique in forecasting the groundwater level fluctuations in an unconfined coastal aquifer in India. The most appropriate set of input variables to the model are selected through a combination of domain knowledge and statistical analysis of the available data series. Several ANN models are developed that forecasts the water level of two observation wells. The results suggest that the model predictions are reasonably accurate as evaluated by various statistical indices. An input sensitivity analysis suggested that exclusion of antecedent values of the water level time series may not help the model to capture the recharge time for the aquifer and may result in poorer performance of the models. In general, the results suggest that the ANN models are able to forecast the water levels up to 4 months in advance reasonably well. Such forecasts may be useful in conjunctive use planning of groundwater and surface water in the coastal areas that help maintain the natural water table gradient to protect seawater intrusion or water logging condition.  相似文献   

18.
济南市有效利用城市雨水回灌岩溶地下水探讨   总被引:2,自引:0,他引:2  
利用雨水补给地下水已成为城市水资源管理的有效措施.文中以济南市为例探讨了雨水回灌岩溶地下水的途径.济南市具有较好的岩溶水赋存条件,通过人工回灌工程,采用点面结合的回灌方式,利用雨水补给地下水,将城区岩溶水直接补给区的水循环尽可能地恢复到一定的自然状态,最终达到供水保泉的目的.  相似文献   

19.
Australian experience at five research sites where stormwater and reclaimed water have been stored in aquifers prior to reuse, have yielded valuable information about water treatment processes in anaerobic and aerobic aquifers. One of these sites is the stormwater to potable water ASTR project at the City of Salisbury, a demonstration project within the broader EC project 'RECLAIM WATER'. A framework for characterising the effectiveness of such treatment for selected organic chemicals, natural organic matter, and pathogens is being developed for inclusion in new Australian Guidelines for Management of Aquifer Recharge. The combination of pre-treatments (including passive systems such as reed beds) and aquifer treatment effectiveness in relation to source waters and intended uses of recovered water will be described. Advantages and disadvantages of various types of pre-treatments in relation to effectiveness and sustainability of managed aquifer recharge will be discussed taking account of aquifer characteristics. These observations will be consolidated into a draft set of principles to assist in selection of engineered treatments compatible with passive treatment in aquifers.  相似文献   

20.
Mexico City, with a population of 18 million, has been sending its wastewater for more than 100 years to the Tula Valley where it is used to irrigate 90,000 ha. Due to the large wastewater volume (60 m3/s) sent through unlined channels, combined with the use of very high irrigation rates, artificial recharge of the local aquifer has been occurring. This recharge is estimated in more than 25 m3/s. As a consequence, the water table has raised and several springs have appeared in the last decades with flows between 100 to 600 L/s. These springs and several wells are the water sources in the region. An evaluation of the Tula Valley aquifer quality was performed to analyze the use of such water as source of drinking water for Mexico City. The work is divided into 5 individual projects: (a) drinking water quality in the Tula Valley; (b) water availability in the Tula Valley; (c) wastewater treatment due to its use for irrigation, (d) use of membrane processes to treat groundwater; and (d) biota developed in the new surface water reservoirs. Results show that it is feasible to use this reclaimed water as drinking source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号