首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
为研究三级复叠制冷系统中低温循环制冷剂替代的可行性方案,采用R1150/R170/R717、R50/R170/R717和R14/R170/R717三种工质组合,对三级复叠式制冷系统的高低温循环压缩机的排气温度、压缩机输入功率、COP、热力学完善度、系统的■效率、■损失以及系统中各个部件■损失所占比例随蒸发温度的变化进行热力学分析。研究结果表明:不同蒸发温度下均存在最佳中间循环冷凝温度,使COP值最大。蒸发温度由-100.0℃升高到-80.0℃时,R1150/R170/R717的■损失最小,COP、热力学完善度和■效率最大。R1150/R170/R717的COP由0.60增大到0.82。R1150/R170/R717的COP比R14/R170/R717的COP高3.47%~4.49%。主要的■损失部件是冷凝器,冷凝器的■损失所占比例随蒸发温度的升高而升高。推荐在三级复叠式制冷系统中采用R1150/R170/R717制冷剂组合方案,研究结果为三级复叠式制冷系统工质组的选择提供理论依据。  相似文献   

2.
介绍了以自然工质CO2为高温循环工质,R290为低温循环工质,同时制冷和供热的CO2/R290复叠式制冷热泵系统,通过对CO2/R290复叠式制冷热泵系统的性能分析,得到了气体冷却器的入口压力和出口温度,复叠式循环的蒸发温度,低温循环的冷凝温度对复叠式制冷热泵系统性能的影响,为今后的CO2/R290复叠式制冷热泵系统的优化设计和开发应用打下了一定的基础。  相似文献   

3.
为了进一步认识系统的不可逆能量损失,采用高级(火用)分析方法应用于跨临界CO2内部过冷增压制冷系统,以室外环境温度15.0和30.0℃为例进行计算。结果表明,可避免(火用)损失最主要的部件是高压级压缩机,其次是气体冷却器,优化的重点应放在这些可避免(火用)损失占比较大的部件上;对于整个系统而言,系统(火用)损的绝大部分是可以避免、内因性的,说明系统大部分的不可逆性可以通过优化部件本身来降低。  相似文献   

4.
胡晓微  张蓓  董胜明 《节能》2022,41(2):39-43
为研究不同滑移温度的混合工质应用于复叠式热泵系统低温回路对热泵机组性能的影响,搭建复叠式高温热泵实验台,选用R245fa与R134a/R245fa(质量比分别为9:1、8:2、7:3、6:4)作为高温、低温级循环工质,蒸发器进水温度在20~40℃,冷凝器出水温度在110~130℃的情况下进行试验,并对机组的COP、制热...  相似文献   

5.
通过建立超临界二氧化碳(S-CO_2)布雷顿复叠式循环系统,首先分析在不同高温汽轮机入口温度和系统循环压比下压缩机的最佳分流系数,再讨论汽轮机分流系数对各部件■损系数的影响。研究表明:汽轮机分流系数的变化对系统的效率影响较大,在研究复叠式循环最佳工况时,研究汽轮机分流系数必不可少,且复叠式循环放热、吸热和回热过程■损系数相对很大,仍是系统优化的重点。  相似文献   

6.
该文针对一种基于闭式布雷顿循环的热泵储电系统,分析主要设备的(火用)损失与(火用)效率。对于压缩机和透平,发电系统中的压缩机由于工作温度区间跨越了环境温度,具有最高的(火用)损失;对于换热器,工作在环境温度附近的低温换热器(火用)效率最低(不考虑水冷换热器),而(火用)损失最大的为水冷换热器。计算得到本系统的(火用)效率为59.27%。提高压缩机和透平的效率可提升系统(火用)效率,且发电系统中的设备效率对系统(火用)效率的影响更显著;此外,降低冷却水的温度或有效利用冷却水的热量均可以提高系统的(火用)效率。  相似文献   

7.
运用能量系统的为(火用)分析方法.建立地热-高温水源热泵供热系统的炯分析理论模型.以实际工程项目为例,分析和讨论了系统运行条件下的能量有效利用,并计算了地热-高温热泵供热系统的火甩效率和各部分(火用)损失、(火用)效率.从计算结果看出,板式换热器的火用损失所占比例较大.  相似文献   

8.
针对余热的有效利用,建立了有机朗肯循环-复叠式制冷系统的热力学模型,其中:有机朗肯循环系统分别采用R123、R1234ze、R245fa、R600a、RC318、R141b等六种工质;复叠式制冷系统分别采用R22/R23、R404/R23、R290/R744、R717/R744等四种工质对。选择系统?效率作为性能评价指标,运用热力学第二定律研究系统运行参数对系统?效率的影响,分析了系统各部件的?损失,并指出了能量利用的薄弱环节,提出了有效提高系统性能的建议,为系统的优化提供参考。结果表明,对系统?效率而言,R141b和R717/R744是最佳工质。系统主要部件按?损失大小依次为凝汽器、膨胀机、高温级冷凝器、发生器、高温级压缩机、低温级蒸发器、蒸发冷凝器。尽可能提高压缩机的等熵效率,优化设计换热器的结构,减小传热温差,才能减少不可逆损失,提高换热器的?效率。  相似文献   

9.
通过(火用)分析的方法分析以R134a为制冷剂的中温闭式热泵干燥消防水带系统的性能,对比研究不同干燥温度下系统COP、单位能耗除湿量、(火用)损失以及(火用)效率的变化情况,确定系统最佳干燥工况。结果表明:随着干燥温度的提高,干燥时间逐渐变短,系统COP逐渐降低,总(火用)损失降低,(火用)效率随之增加。在干燥温度为65℃时系统总耗电量达到最小值,为3.01 kWh。此时单位能耗除湿量(SMER)达到最大,为0.537 kg/kWh。系统(火用)效率在干燥温度为60℃时达到最大,为44.2%,比干燥温度为40℃的最低(火用)效率提高87.3%。  相似文献   

10.
对一种带压缩空气储能的冷热电联产系统进行了热力学(火用)分析,得到了各主要部件和整个系统的(火用)损失及(火用)效率的变化规律.分析结果表明空气透平绝热效率的提高对系统(火用)效率的贡献大于压缩机效率同样提高的功效;在其它参数确定时,存在最佳压比,可使系统的(火用)效率在该条件下达极值;高温换热器是新型冷热电联产系统中产生(火用)损失的主要部件,而循环水量的大小是影响高温换热器(火用)效率的主要因素.  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

13.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

14.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

15.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

16.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

17.
This paper presents the exergy analysis results for the production of several biofuels, i.e., SNG (synthetic natural gas), methanol, Fischer–Tropsch fuels, hydrogen, as well as heat and electricity, from several biowastes generated in the Dutch province of Friesland, selected as one of the typical European regions. Biowastes have been classified in 5 virtual streams according to their ultimate and proximate analysis. All production chains have been modeled in Aspen Plus in order to analyze their technical performance. The common steps for all the production chains are: pre-treatment, gasification, gas cleaning, water–gas-shift reactions, catalytic reactors, final gas separation and upgrading. Optionally a gas turbine and steam turbines are used to produce heat and electricity from unconverted gas and heat removal, respectively. The results show that, in terms of mass conversion, methanol production seems to be the most efficient process for all the biowastes. SNG synthesis is preferred when exergetic efficiency is the objective parameter, but hydrogen process is more efficient when the performance is analyzed by means of the 1st Law of Thermodynamics. The main exergy losses account for the gasification section, except in the electricity and heat production chain, where the combined cycle is less efficient.  相似文献   

18.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

19.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

20.
Hydrogen was produced from primary sewage biosolids via mesophilic anaerobic fermentation in a continuously fed bioreactor. Prior to fermentation the sewage biosolids were heated to 70 °C for 1 h to inactivate methanogens and during fermentation a cellulose degrading enzyme was added to improve substrate availability. Hydraulic retention times (HRT) of 18, 24, 36 and 48 h were evaluated for the duration of hydrogen production. Without sparging a hydraulic retention time of 24 h resulted in the longest period of hydrogen production (3 days), during which a hydrogen yield of 21.9 L H2 kg−1 VS added to the bioreactor was achieved. Methods of preventing the decline of hydrogen production during continuous fermentation were evaluated. Of the techniques evaluated using nitrogen gas to sparge the bioreactor contents proved to be more effective than flushing just the headspace of the bioreactor. Sparging at 0.06 L L min−1 successfully prevented a decline in hydrogen production and resulted in a yield of 27.0  L H2 kg−1 VS added, over a period of greater than 12 days or 12 HRT. The use of sparging also delayed the build up of acetic acid in the bioreactor, suggesting that it serves to inhibit homoacetogenesis and thus maintain hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号