首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The topology optimization using isolines/isosurfaces and extended finite element method (Iso-XFEM) is an evolutionary optimization method developed in previous studies to enable the generation of high-resolution topology optimized designs suitable for additive manufacture. Conventional approaches for topology optimization require additional post-processing after optimization to generate a manufacturable topology with clearly defined smooth boundaries. Iso-XFEM aims to eliminate this time-consuming post-processing stage by defining the boundaries using isovalues of a structural performance criterion and an extended finite element method (XFEM) scheme. In this article, the Iso-XFEM method is further developed to enable the topology optimization of geometrically nonlinear structures undergoing large deformations. This is achieved by implementing a total Lagrangian finite element formulation and defining a structural performance criterion appropriate for the objective function of the optimization problem. The Iso-XFEM solutions for geometrically nonlinear test cases implementing linear and nonlinear modelling are compared, and the suitability of nonlinear modelling for the topology optimization of geometrically nonlinear structures is investigated.  相似文献   

2.
Level set methods are becoming an attractive design tool in shape and topology optimization for obtaining efficient and lighter structures. In this paper, a dynamic implicit boundary‐based moving superimposed finite element method (s‐version FEM or S‐FEM) is developed for structural topology optimization using the level set methods, in which the variational interior and exterior boundaries are represented by the zero level set. Both a global mesh and an overlaying local mesh are integrated into the moving S‐FEM analysis model. A relatively coarse fixed Eulerian mesh consisting of bilinear rectangular elements is used as a global mesh. The local mesh consisting of flexible linear triangular elements is constructed to match the dynamic implicit boundary captured from nodal values of the implicit level set function. In numerical integration using the Gauss quadrature rule, the practical difficulty due to the discontinuities is overcome by the coincidence of the global and local meshes. A double mapping technique is developed to perform the numerical integration for the global and coupling matrices of the overlapped elements with two different co‐ordinate systems. An element killing strategy is presented to reduce the total number of degrees of freedom to improve the computational efficiency. A simple constraint handling approach is proposed to perform minimum compliance design with a volume constraint. A physically meaningful and numerically efficient velocity extension method is developed to avoid the complicated PDE solving procedure. The proposed moving S‐FEM is applied to structural topology optimization using the level set methods as an effective tool for the numerical analysis of the linear elasticity topology optimization problems. For the classical elasticity problems in the literature, the present S‐FEM can achieve numerical results in good agreement with those from the theoretical solutions and/or numerical results from the standard FEM. For the minimum compliance topology optimization problems in structural optimization, the present approach significantly outperforms the well‐recognized ‘ersatz material’ approach as expected in the accuracy of the strain field, numerical stability, and representation fidelity at the expense of increased computational time. It is also shown that the present approach is able to produce structures near the theoretical optimum. It is suggested that the present S‐FEM can be a promising tool for shape and topology optimization using the level set methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
A nonprobabilistic reliability-based topology optimization (NRBTO) method for truss structures with interval uncertainties (or unknown-but-bounded uncertainties) is proposed in this paper. The cross-sectional areas of levers are defined as design variables, while the material properties and external loads are regard as interval parameters. A modified perturbation method is applied to calculate structural response bounds, which are the prerequisite to obtain structural reliability. A deviation distance between the current limit state plane and the objective limit state plane, of which the expression is explicit, is defined as the nonprobabilistic reliability index, which serves as a constraint function in the optimization model. Compared with the deterministic topology optimization problem, the proposed NRBTO formulation is still a single-loop optimization problem, as the reliability index is explicit. The sensitivity results are obtained from an analytical approach as well as a direct difference method. Eventually, the NRBTO problem is solved by a sequential quadratic programming method. Two numerical examples are used to testify the validity and effectiveness of the proposed method. The results show significant effects of uncertainties to the topology configuration of truss structures.  相似文献   

4.
The topology optimization problem of a continuum structure is further investigated under the independent position uncertainties of multiple external loads, which are now described with an interval vector of uncertain-but-bounded variables. In this study, the structural compliance is formulated with the quadratic Taylor series expansion of multiple loading positions. As a result, the objective gradient information to the topological variables can be evaluated efficiently upon an explicit quadratic expression as the loads deviate from their ideal application points. Based on the minimum (largest absolute) value of design sensitivities, which corresponds to the most sensitive compliance to the load position variations, a two-level optimization algorithm within the non-probabilistic approach is developed upon a gradient-based optimization method. The proposed framework is then performed to achieve the robust optimal configurations of four benchmark examples, and the final designs are compared comprehensively with the traditional topology optimizations under the loading point fixation. It will be observed that the present methodology can provide a remarkably different structural layout with the auxiliary components in the design domain to counteract the load position uncertainties. The numerical results also show that the present robust topology optimization can effectively prevent the structural performance from a noticeable deterioration than the deterministic optimization in the presence of load position disturbances.  相似文献   

5.
Although topology optimization is established for linear static problems, more effort is required for solving nonlinear plastic problems. A new topology optimization approach with equivalent static loads (ESLs) is suggested to find the optimum topologies and locations of plastic hinges of thin-walled crash boxes by considering crash-induced deformation, the main crash energy-absorbing mechanism. Together with finite element method crashworthiness analyses, considering all nonlinearities with rate-dependent plasticity, the method was developed using an appropriate time-incremental scheme of ESLs without removing any high values of loads. Analyses show that the crash boxes with optimum topologies have energy-absorbing capabilities equivalent to the original structure. The proposed method is evaluated for two crashes: a crash box at low speed and a double cell subjected to high-speed collision. The results indicate that this method captures nonlinear crushing behaviours and accurate locations of plastic hinges where, if proper reinforcements are made, energy absorption can be enhanced.  相似文献   

6.
研究了具有模糊参数的连续体结构在模糊载荷作用下的拓扑优化设计问题。利用信息熵将模糊变量转换为随机变量,构建了随机载荷作用下的随机参数的连续体结构的拓扑优化设计数学模型,以结构的形状拓扑信息为设计变量,结构总质量均值极小化为目标函数,满足单元应力可靠性为约束条件,利用分布函数法对应力可靠性约束进行了等价显式化处理。基于随机因子法,利用代数综合法导出了应力响应的数字特征的计算表达式。采用双方向渐进结构优化(BESO)方法求解。通过两个算例验证了该文模型及求解方法的合理性和有效性。  相似文献   

7.
郭旭  赵康 《工程力学》2005,22(5):69-77
发展了一种利用水平集演化技术求解拓扑相关荷载作用下结构拓扑优化问题的数值方法。通过引入水平集函数,我们以隐含的方式对结构的拓扑和形状作了描述,从而把拓扑优化问题转化为了寻求最优水平集函数的数学规划问题。利用基于连续体概念的灵敏度分析技术,构造了用于驱动水平集演化的速度场。由于结构的边界可以用零水平集加以描述,因此利用适当的数学变换,我们可以方便地处理施加在结构上的拓扑相关荷载,这样就避免了以往算法中繁复的边界提取工作以及为了处理拓扑相关荷载所采取的特殊技巧。文末的数值算例表明了提出的优化方法在处理此类问题时所具有的独到的优越性。  相似文献   

8.
针对稳态热传导问题,以结构散热弱度最小为目标,建立了连续体传热结构的拓扑优化模型和方法,给出了相应的算例。优化方法中分别建立了设计相关载荷和非相关载荷的灵敏度列式,采用Rational Approximation of Material Properties (RAMP)方法对材料密度进行惩罚,利用优化准则法控制设计目标与材料分布,以敏度过滤技术抑制棋盘格效应。算例的结果直观显示了设计相关载荷和非设计相关载荷以及复合载荷对结构拓扑构型的影响规律,表明了该文考虑设计相关载荷的稳态热传导结构拓扑优化方法的合理性。  相似文献   

9.
10.
In this paper, the element free Galerkin method (EFG), combined with evolutionary structural optimization method (ESO), is applied to carry out the topology optimization of the continuum structures. Considering the deletion criterion based on the stresses, the mathematical formulation of the topology optimization is developed. The objective function of this model is the minimized weight. Several numerical examples are used to prove the feasibility of the approach adopted in this paper. And the examples show the simplicity and fast convergence of the proposed method.  相似文献   

11.
As the capabilities of additive manufacturing techniques increase, topology optimization provides a promising approach to design geometrically sophisticated structures. Traditional topology optimization methods aim at finding conceptual designs, but they often do not resolve sufficiently the geometry and the structural response such that the optimized designs can be directly used for manufacturing. To overcome these limitations, this paper studies the viability of the extended finite element method (XFEM) in combination with the level-set method (LSM) for topology optimization of three dimensional structures. The LSM describes the geometry by defining the nodal level set values via explicit functions of the optimization variables. The structural response is predicted by a generalized version of the XFEM. The LSM–XFEM approach is compared against results from a traditional Solid Isotropic Material with Penalization method for two-phase “solid–void” and “solid–solid” problems. The numerical results demonstrate that the LSM–XFEM approach describes crisply the geometry and predicts the structural response with acceptable accuracy even on coarse meshes.  相似文献   

12.
We consider equivalent reformulations of nonlinear mixed 0–1 optimization problems arising from a broad range of recent applications of topology optimization for the design of continuum structures and composite materials. We show that the considered problems can equivalently be cast as either linear or convex quadratic mixed 0–1 programs. The reformulations provide new insight into the structure of the problems and may provide a foundation for the development of new methods and heuristics for solving topology optimization problems. The applications considered are maximum stiffness design of structures subjected to static or periodic loads, design of composite materials with prescribed homogenized properties using the inverse homogenization approach, optimization of fluids in Stokes flow, design of band gap structures, and multi-physics problems involving coupled steady-state heat conduction and linear elasticity. Several numerical examples of maximum stiffness design of truss structures are presented. The research is funded by the Danish Natural Science Research Council and the Danish Research Council for Technology and Production Sciences.  相似文献   

13.
Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its different strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures on the basis of topology optimization with elastoplastic material modeling. Concrete and steel are both considered as elastoplastic materials, including the appropriate yield criteria and post‐yielding response. The same approach can be applied also for topology optimization of other material compositions where nonlinear response must be considered. Optimized distribution of materials is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
讨论了敷设阻尼材料的薄板结构考虑瞬态响应时阻尼材料层的最优布局问题。基于SIMP方法构造人工阻尼材料惩罚模型和结构拓扑优化模型,以阻尼材料的相对密度作为设计变量,在给定阻尼材料用量的条件下,最小化结构瞬态位移响应的时间积分。由于结构整体呈现非比例阻尼特性,采用逐步积分法对结构的振动方程进行求解。通过伴随变量法得到目标函数对设计变量的灵敏度表达式,在此基础上采用基于梯度的移动渐近线方法求解。数值算例验证了优化模型与算法的合理性和有效性。  相似文献   

15.
This paper will propose a more effective and efficient topology optimization method based on isogeometric analysis, termed as isogeometric topology optimization (ITO), for continuum structures using an enhanced density distribution function (DDF). The construction of the DDF involves two steps. (1)  Smoothness: the Shepard function is firstly utilized to improve the overall smoothness of nodal densities. Each nodal density is assigned to a control point of the geometry. (2) Continuity: the high-order NURBS basis functions are linearly combined with the smoothed nodal densities to construct the DDF for the design domain. The nonnegativity, partition of unity, and restricted bounds [0, 1] of both the Shepard function and NURBS basis functions can guarantee the physical meaning of material densities in the design. A topology optimization formulation to minimize the structural mean compliance is developed based on the DDF and isogeometric analysis to solve structural responses. An integration of the geometry parameterization and numerical analysis can offer the unique benefits for the optimization. Several 2D and 3D numerical examples are performed to demonstrate the effectiveness and efficiency of the proposed ITO method, and the optimized 3D designs are prototyped using the Selective Laser Sintering technique.  相似文献   

16.
This paper presents the direct application of topology optimization to the design of shape memory alloy (SMA) thermal actuators. Because SMAs exhibit strongly nonlinear, temperature‐dependent material behavior, designing effective multidimensional SMA actuator structures is a challenging task. We pursue the use of topology optimization to address this problem. Conventional material scaling topology optimization approaches are hampered by the complexity of the SMA constitutive behavior combined with large actuator deflections. Therefore, for topology optimization we employ the element connectivity parameterization approach, which offers improved analysis convergence and robustness, as well as an unambiguous treatment of nonlinear materials. A path‐independent SMA constitutive model, aimed particularly at the NiTi R‐phase transformation, is employed, allowing efficient adjoint sensitivity analysis. The effectiveness of the proposed SMA topology optimization is demonstrated by numerical examples of constrained and unconstrained formulations of actuator stroke maximization, which provide insight into the characteristics of optimal SMA actuators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
大型复杂三维结构拓扑优化设计既具有理论意义,又具有重要的应用价值。基于等效转换的非奇异的结构优化模型,研究结构位移要求的最小结构重量设计问题。首先,介绍了位移约束的三维结构优化准则和公式。而后,为了提高拥有数万个单元以上的三维结构的计算效率,结合结构位移计算的迭代方法,在分析用于结构特性参数计算模型的基础上,建立了一套三维结构拓扑优化的求解策略和算法。最后,给出了几个典型和复杂的三维结构的拓扑优化设计算例。算例表明求解策略和算法是正确和有效的,且具有广泛的工程应用前景。  相似文献   

18.
Nonlinear structural optimization is fairly expensive and difficult, because a large number of nonlinear analyses is required due to the large number of design variables involved in topology optimization. In element density based topology optimization, the low density elements create mesh distortion and the updating of finite element material with low density elements has a severe effect on the optimization results in the next cycles. In order to overcome these difficulties, the equivalent static loads method for nonlinear response structural optimization (ESLSO) primarily used for size and shape optimization has been applied to topology optimization. The nonlinear analysis is performed with the given loading conditions to calculate equivalent static loads (ESLs) and these ESLs are used to perform linear response optimization. In this paper, the authors have presented the results of five case studies with material, geometric and contact nonlinearities showing good agreement and providing justification of the proposed method.  相似文献   

19.
为了实现尺度关联周期性多孔结构的隔振性能优化,提出一种周期性多孔结构特征值拓扑优化方法.基于子结构动态凝聚方法对多孔结构的刚度和质量矩阵进行缩减,采用局部水平集函数(LLSF)对多孔结构进行几何隐式描述,以最大化前6阶特征值为目标函数,以结构体积分数为约束条件,建立周期性多孔结构特征值拓扑优化模型,采用优化准则法对拓扑...  相似文献   

20.
Jenn-long Liu 《工程优选》2013,45(5):499-519
A classical simulated annealing (SA) method is a generic probabilistic and heuristic approach to solving global optimization problems. It uses a stochastic process based on probability, rather than a deterministic procedure, to seek the minima or maxima in the solution space. Although the classical SA method can find the optimal solution to most linear and nonlinear optimization problems, the algorithm always requires numerous numerical iterations to yield a good solution. The method also usually fails to achieve optimal solutions to large parameter optimization problems. This study incorporates well-known fractional factorial analysis, which involves several factorial experiments based on orthogonal tables to extract intelligently the best combination of factors, with the classical SA to enhance the numerical convergence and optimal solution. The novel combination of the classical SA and fractional factorial analysis is termed the orthogonal SA herein. This study also introduces a dynamic penalty function to handle constrained optimization problems. The performance of the proposed orthogonal SA method is evaluated by computing several representative global optimization problems such as multi-modal functions, noise-corrupted data fitting, nonlinear dynamic control, and large parameter optimization problems. The numerical results show that the proposed orthogonal SA method markedly outperforms the classical SA in solving global optimization problems with linear or nonlinear objective functions. Additionally, this study addressed two widely used nonlinear functions, proposed by Keane and Himmelblau to examine the effectiveness of the orthogonal SA method and the presented penalty function when applied to the constrained problems. Moreover, the orthogonal SA method is applied to two engineering optimization design problems, including the designs of a welded beam and a coil compression spring, to evaluate the capacity of the method for practical engineering design. The computational results show that the proposed orthogonal SA method is effective in determining the optimal design variables and the value of objective function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号