首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
为了制备3’-脱氧-3’-18F-氟代胸腺嘧啶核苷(18F-FLT),使用自动化合成装置Tracerlab FXF-N和BAThy法。以5’-O-苯甲酰基-2,3-脱水-胸腺嘧啶脱氧核苷(BAThy)为前体,经过氟化、水解两步反应制得3’-脱氧-3’1-8F-氟代胸腺嘧啶核苷(18F-FLT)注射液。合成总时间约50 min,放化产率约10%,放化纯度大于95%。整个合成过程自动化完成,操作简单、灵活。  相似文献   

2.
采用“一锅法”和TRACERlabFXF-N自动化合成装置,以3-N-t-叔丁氧羰基-1-[5’-O-(4,4’-二甲氧基三苯甲基)-2’-脱氧-3’-O-(4-硝基苯磺酰基)-β-D-苏型阿呋喃糖基]胸腺嘧啶为前体,在同一反应瓶中经亲核氟化、盐酸水解两步反应及HPLC分离纯化制备^18F-FLT注射液。以乙二醇二对甲苯磺酸酯为起始原料,在同一反应瓶中经亲核氟化和烷基化两步反应及HPLC分离纯化得^18F-FET注射液。^18F-FLT和^18F-FET总合成时间分别约为60min和50min,未校正的放化产率均大于20%,放化纯度均大于95%。^18F-FLT和^18F-FET注射液质量控制指标符合放射性药物质量要求。  相似文献   

3.
采用"一锅法"和TRACERlab FXF-N自动化合成装置,以3-N-t-叔丁氧羰基-1-[5'-O-(4,4'-二甲氧基三苯甲基)-2'-脱氧-3'-O-(4-硝基苯磺酰基)-β-D-苏型阿呋喃糖基]胸腺嘧啶为前体,在同一反应瓶中经亲核氟化、盐酸水解两步反应及HPLC分离纯化制备18F-FLT注射液.以乙二醇二对甲苯磺酸酯为起始原料,在同一反应瓶中经亲核氟化和烷基化两步反应及HPLC分离纯化得18F-FET注射液.18F-FLT和18F-FET总合成时间分别约为60 min和50 min,未校正的放化产率均大于20%,放化纯度均大于95%.18F-FLT和18F-FET注射液质量控制指标符合放射性药物质量要求.  相似文献   

4.
使用PET-MF-2V-IT-I型氟-18多功能合成模块,以3-N-t-叔丁氧羰基-1-[5’-O-(4,4’-二甲氧基三苯甲基)-2’-脱氧-3’-O-(4-硝基苯磺酰基-β-1)-苏戊呋喃糖]胸腺嘧啶为前体,经氟化、水解后小柱分离制得18F-FLT注射液。对荷肝细胞癌小鼠进行18F-FLTPET/CT显像,结果显示,柱分离法合成18F-FLT耗时~35min,放化产率为12%-15%,放化纯度95%。表明18F-FLT静脉注射1h后肿瘤对18F-FLT的摄取明显高于周围正常组织。该法合成简单、反应时间短、产率高,可满足临床应用。  相似文献   

5.
孙传金  朱虹  方可元 《同位素》2012,25(3):155-159
采用国产氟多功能模块,以3-甲氧基甲基-16,17-O-磺酰基-表雌三醇-O-环状砜(3-O-(Methoxymethyl) -16,17-O-sulfuryl-16-epiestriol,MMSE)为前体,在国产氟多功能合成模块的密封体系下,经18F标记合成雌激素受体显像剂16α-[18F]氟-17β-雌二醇(18F-FES)。结果显示:合成的18F-FES,不校正合成效率为8.2%,校正合成效率为12.8%;合成时间约为70 min,标记物18F-FES放化纯度大于98%,体外稳定性良好。以上结果表明,国产氟多功能模块可制备18F-FES溶液,制备的18F-FES溶液符合放射性药物的质量要求。  相似文献   

6.
影响2-18F-2-脱氧-β-D-葡萄糖合成效率因素再探   总被引:1,自引:1,他引:1  
张锦明  田嘉禾  郭喆  刘伯里 《同位素》2004,17(3):160-163
以单管法合成2-^18F-2-脱氧-β-D-葡萄糖(^18F-FDG)为例,再一次深入分析了影响合成^18F-FDG效率的因素。结果表明:生产^18F-的残留水会影响^18F-FDG合成效率;反应管内的亲核反应温度偏高会降低中间体的水解程度并使反应管内放射性残留量上升;除乙腈的氮气流也会使最终放射性丢失;而碱水解中间体能大大减少合成时间。通过对合成时间优化和降低体系中水含量、控制气流,^18F-FDG的不校正合成效率(EOS)从59.0%提高到69.3%。  相似文献   

7.
为研究国产11C-多功能合成模块经LOOP环法合成放射性药物[N-甲基-11C]胆碱(11C-Choline,11C-CH)的合成方法,对碱当量、溶剂效应及前体量等影响因素进行研究,优化LOOP环法合成11C-CH的合成工艺。11C-CH的优化条件:前体量为60~150 uL,无碱无溶剂,室温与11C-CH3I反应。此条件下11C-CH的合成效率为(72.16±2.96)%(n=19, 11C-CH3I未校正效率),产品的放化纯度均大于95%,产量为(7.59±1.54) GBq(n=19)。国产11C-多功能合成模块LOOP环法合成11C-CH与C18柱固相法进行比较表明,LOOP环可以多次重复利用,降低生产成本,提高合成效率,实现稳定、全自动化合成11C-CH,产品满足临床需求。  相似文献   

8.
用国产氟多功能模块合成心肌脂肪酸代谢显像剂18F-FTHA用于临床研究.以苄基-14-(R,S)-对甲苯磺酰基-6-硫代十七烷酸酯为前体,在氟多功能模块上经亲核反应、水解及HPLC纯化,最后经固相萃取,得到18F-FTHA.研究其在正常NH小鼠体内的生物学分布以及正常SD大鼠Micro-PET显像.结果显示,18F-FTHA不校正合成效率为10.6%,合成时间为50min.18F-FTHA的放化纯度为99%,体外稳定性良好.生物学分布结果表明,60 min心肌摄取为19.04 ID%/g;心与肝放射性摄取比在60~90 min达到3~6倍;Micro-PET心肌显像清晰.结果提示,国产氟多功能模块合成18F-FTHA耗时短,放化纯度高,其质量符合氟-18药物的临床.  相似文献   

9.
FDG 18F-脱氧葡萄糖(18F-FDG)合成模块一般仅能采用一种工艺进行生产,改变工艺条件会对产品质量造成影响,本文旨在解决此问题,同时优化生产工艺。本研究对国产碱水解FDG合成模块进行改进,省去自动加碱装置及在柱水解部件。通过研究亲核反应时间、盐酸量、水解时间及残留溶剂等影响因素,寻求酸水解合成18F-FDG最优化的合成工艺。从淋洗18F-离子至终产品18F-FDG的总合成时间为27 min,合成效率为60.27%±2.29%(n=37,未校正效率),产品放化纯度大于98%,产量(29.15±3.09)GBq(n=37)。改进的合成工艺实现了自动化、稳定合成18F-FDG,产品满足临床需求,实现了两种不同工艺在同一模块上制备18F-FDG。  相似文献   

10.
18F-THK5317是以tau为靶点的新型分子探针,本研究利用国产氟多功能模块自动化合成18F-THK5317,在动物实验基础上进行了初步的临床研究。以(S)-2-(4-甲氨基苯基)-6-[[2-(四氢吡喃基-)-3-对甲苯磺酰氧基]丙氧基]喹啉为前体,经亲核反应、酸水解、碱中和,分别采用混合液直接HPLC纯化与混合液经C18小柱预纯化后再HPLC分离纯化两种方法得到18F-THK5317;研究了药物在正常KM小鼠体内生物学分布;对比了18F-THK5317在正常人(HC)和阿尔茨海默病(AD)患者脑中PET/MR显像结果。先以C18小柱预纯化粗产品再用HPLC分离,能显著改善HPLC分离效果和提高产品放化纯度。18F-THK5317未校正合成产率为(18.7±5.3)%(n=7),放化纯度大于95%。小鼠生物分布表明,探针易穿透血脑屏障,并且能迅速从正常脑组织清除,Brain1 min/Brain60 min放射性摄取比为34;PET/MR结果显示,AD患者双侧颞叶、皮层的放射性滞留均高于健康对照。以上结果表明,国产氟多功能模块能够稳定高效地合成符合药物质控标准的18F-THK5317,动物实验及初步临床研究表明18F-THK5317具有在体显像tau蛋白的潜力。  相似文献   

11.
为自动化合成用于5-羟色胺(5-HT_(1A))受体显像~(11)C标记的N-[2-[4-(2-甲氧基苯基)-1-哌嗪基]乙基]-N-2-吡啶基环己烷甲酰胺(~(11)C-WAY-100635),采用自动化合成模块,以去甲基WAY-100635为前体,经甲基化,HPLC纯化和Sep-Pak Plus C18柱去除有机溶剂制得~(11)C-WAY-100635注射液。结果显示,合成方法共耗时约40 min,~(11)C-WAY-100635注射液的未校正放化产率10%~20%,放化纯度97%;静脉注射日本大耳白兔~(11)C-WAY-100635(约111 MBq)后,脑组织放射性摄取显著,且明显高于头颅等其他组织。自动化合成5-HT_(1A)受体显像剂~(11)C-WAY-100635方法简单,反应时间较短,放化纯度高,产率稳定可靠,可在临床中推广应用。  相似文献   

12.
以MTR-Nos-Boc-LT(3-N-Boc-5-DMTr-3-Nos-2-脱氧-β-D-胸腺嘧啶核苷)为前体,利用季铵盐为相转移催化剂,采用质子溶剂,摸索更优的18FLT合成方法。并就合成的18FLT进行肿瘤鼠的MicroPET扫描。研究结果显示,季铵盐可以取代K2.2.2/K2CO3体系,将QMA柱上的18F洗脱,并且是很好的相转移催化剂,氟化反应中加入质子溶剂,18FLT的放化纯度大于95%,不矫正合成效率为50%。  相似文献   

13.
肿瘤显像剂18F-氟代乙酸盐的自动化合成   总被引:13,自引:0,他引:13  
为研究肿瘤显像剂18F-氟代乙酸盐(18F-FAC)的自动化合成工艺,采用"一锅法"和TRACERlab FXF-N自动化合成装置,以溴代乙酸苄酯为前体,在同一反应瓶中经亲核氟化、NaOH水解两步反应及HPLC系统分离纯化制备18F-FAC注射液.总合成时间约50 min,未校正放化产率和放化纯度分别大于45%和99%.采用"一锅法"自动化合成18F-FAC,操作简便,能满足科研和临床正电子发射断层显像的需要.  相似文献   

14.
采用附接半制备HPLC的国产FDG模块自动化合成了3’-脱氧-3’-[18F]氟代胸(腺嘧啶脱氧核)苷(18F-FLT)。将15 mg 3-N-Boc-5’-O-二甲氧基三苯基-3’-O-nosyl-胸苷溶解在0.5 mL DMSO中,使之与18F-在100 ℃反应5 min,之后用1 mol/L HCl 于110 ℃下水解5 min,用2 mol/L NaOH中和;TLC法测得18F-FLT的标记率为 67.5%(n=8),而 HPLC测得的标记率为39.4% (n=6);产品经半制备HPLC分离纯化,最终产品的合成效率为21.2%(n=3,不衰减校正),包括半制备HPLC的分离纯化在内,总的合成时间为30 min。产品的放化纯度大于99%,比活度大于 740 TBq/g(180 PBq/mol)。产品在10%乙醇中,6 h内未见分解。以上结果表明,国产FDG模块配合半制备HPLC,可以合成满足临床需求的18F-FLT。  相似文献   

15.
用"一锅法"和TRACERlab FXF-N自动化合成仪系统合成了18F-氟代乙酸盐(18F-FAC)和1-H-1-(3-18F-2-羟基丙基)-2-硝基咪唑(18F-FMISO).以溴代乙酸苄酯为前体,在同一反应瓶中经亲核氟化、NaOH水解两步反应及Sep Pak小柱分离纯化制备了18F-FAC注射液,总合成时间小于40 min,未经校正的放化产率和放化纯度分别大于45%和99%.以1-(2'-硝基-1'-咪唑基)-2-O-四氢吡喃基-3-O-甲苯磺酰基丙二醇为原料,用类似方法制备了18F-FMISO注射液,总合成时间小于40min,未经校正的放化产率和放化纯度分别大于40%和95%.采用"一锅法"自动化合成18F-FAC和18F-FMISO注射液,操作简便,该工艺可用制备2-18F-2-脱氧-D-葡萄糖(18F-FDG)的全自动化合成模块来制备18F-FAC和18F-FMISO注射液.  相似文献   

16.
采用全自动合成模块,合成临床使用的11 C-Raclopride。用11 C-Triflate-CH3通入含10μL的0.5mol/L氢氧化钠的去甲基Raclopride的200μL的丙酮溶液中,常温反应1min,经半制备HPLC分离,收集粗产品,再经固相萃取,用1mL乙醇淋洗SEP-PAK C-18柱,收集淋洗液,用生理盐水稀释即得可供注射的11 C-Raclopride。结果表明,反应体系中加入碱的量(1~50μmol)对标记率影响不大,但影响了C-N甲基化的副反应产物比例。合成时间为28min,前体用量为0.1~0.4mg,合成效率为(55.1±8.4)%(n=40),放化纯度大于99%,放射性浓度为370~550 MBq/mL,乙醇浓度低于10%,比活度为1.73×1014 Bq/g,产品无菌、无热源符合要求。采用11 C-Triflate-CH3为标记前体,经国产商品化模块全自动合成的11 C-Raclopride的质量满足临床的要求。  相似文献   

17.
为快速、高效合成中枢神经阿片受体显像剂11C-carfentanil(11C-CFN),对国产商业化11C-胆碱合成模块略做改动,并优化了合成条件。结果表明,采用4-哌啶乙酸钠,4-[(1-丙羰基)苯胺]-1-(2-苯乙基)[钠盐]作前体,DMSO作溶剂,11CH3-triflate作甲基化试剂,在胆碱模块上采用反应瓶法,可自动化合成11C-CFN。合成的11C-CFN活度>14.8 GBq、比活度>1.4×1014Bq/g、放化纯度>99%,校正合成效率>80%(n=55,以11CH3-triflate计算),全部合成时间为18 min。经Micro PET/CT证实,11C-CFN可用于μ阿片受体的PET显像研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号