首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of phorbol ester, 12-deoxyphorbol 13-isobutyrate (DPB), on muscle tension and cytosolic Ca2+ ([Ca2+]i) level was investigated in rat anococcygeus muscle in comparison with other smooth muscles. 1) DPB (10(-6) M) induced a large contraction and an elevation of [Ca2+]i level in rat aorta and small and rhythmic changes in tension and [Ca2+]i level in guinea pig ileum. However, DPB did not change either of the parameters in rat anococcygeus muscle. 2) DPB caused tension development without changing the [Ca2+]i level elevated by high K+, ionomycin or beta-escin in the anococcygeus muscle. 3) In the beta-escin permeabilized muscles of guinea pig ileum and urinary bladder, rabbit mesenteric artery and rat anococcygeus muscle, DPB enhanced the Ca(2+)-developed tension. Moreover, the enhancement was inhibited by H-7 (3 x 10(-5) M). 4) DPB did not cause muscle tension to develop in the muscle of rat aorta, guinea pig ileum and rat anococcygeus muscle, pretreated with phorbol 12-myristate 13-acetate for 24 hr. In conclusion, DPB showed different contractile effects on the aorta, ileum and anococcygeus muscle, respectively. The initiation of muscle tension by DPB probably requires [Ca2+]i and the DPB-induced enhancement may be due to a Ca2+ sensitization of contractile elements in the anococcygeus muscle. Therefore, the difference between the DPB-induced response of the anococcygeus muscle and those of the other muscles seems to be due to a different Ca2+ movement caused by DPB. Moreover, it is suggested that DPB develops muscle tension by increasing [Ca2+]i and enhances it through the mediation of protein kinase C in the anococcygeus muscle as well as the other smooth muscles.  相似文献   

2.
Intracellular pH (pHi) is elucidated to be an important regulator of various cell functions, but the role of pHi in smooth muscle contraction remains to be clarified. The purpose of the present study is to examine the effects of cell alkalinization by exposure to NH4Cl on cytosolic Ca2+ level ([Ca2+]i) and on muscle tone. We attempted simultaneous measurements of both [Ca2+]i and contractile force in rat isolated thoracic aorta from which the endothelium was removed. NH4Cl (10-80 mM) increased both [Ca2+]i and muscle tone in the presence of external Ca2+. These responses were reproducible. The removal of Ca2+ from the nutrient solution partially inhibited the rise in [Ca2+]i and the smooth muscle contraction induced by NH4Cl. In addition, the Ca2+ channel blocker verapamil also partially attenuated the responses to NH4Cl. The NH4Cl-induced responses were gradually reduced as NH4Cl was repeatedly added in a Ca(2+)-free solution. Norepinephrine (NE, 1 microM) induced a transient increase in [Ca2+]i and sustained contraction in the absence of external Ca2+, and the subsequent application of NE had little effect on [Ca2+]i. After internal Ca2+ stores were depleted by exposure to NE, the subsequent application of NH4Cl induced increases in [Ca2+]i and tension of the aorta in a Ca(2+)-free solution. These results suggest that NH4Cl mainly evokes Ca2+ release from the internal Ca2+ stores that are not linked with adrenergic alpha-receptor and causes Ca2+ influx through voltage-dependent Ca2+ channels in the vascular smooth muscle.  相似文献   

3.
To explore the role of calcitonin gene-related peptide (CGRP) in rat pregnancy, we determined the density of myometrial CGRP-encoded nerve fibre terminals and examined, in an organ bath, the relaxant effect of the peptide on uterine strips near parturition. Comparisons were made with the uterus and aorta of nonpregnant rats. In the myometrium, CGRP immunoreactive nerve fibers were abundant in nonpregnant rats and scarce at the parturient stage. In the aorta there was no variation in the density of CGRP fibres with gestation. In nonpregnant rats only, CGRP relaxed spontaneous and tetrodotoxin (TTX)-sensitive electrically-evoked uterine contractions (EC50 40 nM, Emax 80%). The effect was antagonized by CGRP[8-37] (pKB 6.47) but was not affected by either blockers of nitricoxid synthase or ATP-sensitive potassium channels. CGRP was also able to relax contractions evoked by direct depolarization of the cells (TTX-insensitive contractions) (EC50, 2 nM, Emax 70%). In aorta contracted with arginine vasopressin, CGRP-induced relaxation was the same in nonpregnant and parturient animals. It was antagonized by CGRP [8-371 (pKB 6.90) and was abolished in presence of the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME). Amylin neither relaxed the uterus nor the aorta. In pregnant rats, the relaxant effect of CGRP on the uterus was limited on day 21 and was totally absent on day 22 of gestation. We conclude that the primary relaxant effect of CGRP on the uterus occurs at the level of myometrial smooth muscle cells. In the myometrium, gestation decreases CGRP innervation and impairs the relaxant responses to CGRP. Such changes are not observed in vascular tissues like aorta.  相似文献   

4.
BACKGROUND AND PURPOSE: Adrenomedullin is a recently discovered vasoactive peptide that is structurally related to calcitonin gene-related peptide (CGRP). Adrenomedullin is produced by vascular endothelium and smooth muscle and is present in the brain. The goals of this study were to determine (1) whether adrenomedullin produces dilatation of cerebral arterioles and whether this effect is mediated by activation of CGRP receptors and (2) whether vasodilatation to adrenomedullin was mediated by K+ channels. METHODS: Diameter of cerebral arterioles (mean +/- SE baseline, 46 +/- 1 microns) was measured using a closed cranial window in anesthetized rats. RESULTS: Application of rat adrenomedullin (10(-7) and 10(-6) mol/L) increased vessel diameter by 16 +/- 3% and 45 +/- 8% (n = 5), respectively. Vasodilator responses to repeated application of adrenomedullin were reproducible. Pretreatment of cerebral arterioles with the specific CGRP1 receptor antagonist CGRP-(8-37) (5 x 10(-7) mol/L) selectively inhibited the vasodilator responses to adrenomedullin without inhibiting responses to ADP (10(-5) to 10(-3) mol/L). Responses to adrenomedullin (10(-7) and 10(-6) mol/L) were 14 +/- 1% and 40 +/- 3% before and 2 +/- 2% and 6 +/- 1% after CGRP-(8-37), respectively (P < .01). Glibenclamide (10(-6) mol/L), an inhibitor of ATP-sensitive K+ channels, reduced the responses to adrenomedullin without attenuating responses to ADP. Responses to adrenomedullin were 19 +/- 4% and 35 +/- 6% before and 6 +/- 3% and 19 +/- 5% after glibenclamide, respectively (P < .05). Iberiotoxin (10(-7) mol/L), an inhibitor of calcium-dependent K+ channels, also significantly attenuated responses to adrenomedullin and did not inhibit vasodilatation to papaverine. Responses to adrenomedullin were 16 +/- 2% and 55 +/- 8% before and 12 +/- 4% and 26 +/- 3% after iberiotoxin, respectively (P < .01 for 10(-6) mol/L adrenomedullin). CONCLUSIONS: Adrenomedullin produces substantial dilatation of cerebral arterioles in vivo, and the response is mediated in large part by activation of CGRP1 receptors. Cerebral vasodilatation to adrenomedullin appears to be dependent on activation of K+ channels.  相似文献   

5.
Helodermin-caused vascular relaxation was simultaneously measured with intracellular Ca2+ concentration ([Ca2+]i) in rat mesenteric artery. Helodermin caused concentration-dependent relaxation in the mesenteric artery preconstricted with norepinephrine (NE). Helodermin-caused relaxation was accompanied by decrease in [Ca2+]i, D-cis-Diltiazem, a Ca2+ channel blocker, also lowered the [Ca2+]i and tension increased by NE. However, helodermin relaxed the artery more efficiently than D-cis-diltiazem, suggesting that the peptide decreased myofilament Ca2+ sensitivity. The vascular relaxation and the corresponding decrease in [Ca2+]i induced by helodermin were partly, but significantly attenuated by glibenclamide. Helodermin-induced vascular responses were mimicked by vasoactive intestinal polypeptide (VIP) or forskolin. Furthermore, helodermin increased cAMP contents in the mesenteric artery. These findings show that vasodilatation induced by helodermin is attributable to lowered [Ca2+]i of arterial smooth muscle partly through the activation of glibenclamide-sensitive K+ channels, and to decrease in the myofilament Ca2+ sensitivity. The increase in the cellular cAMP content probably plays a key role in the peptide-induced vasorelaxation.  相似文献   

6.
The effects of the small noncatalytic subunit of myosin light chain phosphatase (MLCPsr) on the Ca2+-induced contraction of smooth muscle were investigated in the Triton X-100-permeabilized porcine renal artery. The full-length recombinant chicken MLCPsr obtained by the bacterial expression system induced an additional contraction at a constant [Ca2+]i and shifted the [Ca2+]i-force relation curve to the left. A deletion mutant containing the N-terminal 78 amino acids of MLCPsr retained the full action, compared with the full-length MLCPsr, while the deletion of this region completely abolished its effect. The process of relaxation was also delayed by the fragment containing the N-terminal 78 amino acids. These results indicated that MLCPsr increases the Ca2+ sensitivity of the contractile apparatus while the N-terminal 78 amino acids are responsible for this effect in vascular smooth muscle.  相似文献   

7.
Papaverine (0.3-100 microM) more potently inhibited phenylephrine (1 microM)-induced contraction than 65 mM K+-induced contraction of the aorta, while it equally inhibited contractions induced by 65 mM K+ and carbachol (1 microM) in ileal smooth muscle. In phenylephrine-treated aorta, papaverine (1-10 microM) increased the cAMP and cGMP content. However, in carbachol-treated ileum, 30 microM papaverine partially increased the cAMP content while it maximally relaxed the preparation. In fura2-loaded aorta, papaverine (0.3-10 microM) inhibited both the contraction and the increase in intracellular Ca2+ level ([Ca2+]i) induced by phenylephrine in parallel. However, papaverine inhibited carbachol-induced contraction with only a small decrease in [Ca2+]i. Papaverine (1-30 microM) inhibited the carbachol-induced increase in oxidized flavoproteins, an indicator of increased mitochondrial oxidative phosphorylation, in ileal smooth muscle whereas it did not change the phenylephrine-induced increase in the aorta. These results suggest that papaverine inhibits smooth muscle contraction mainly by the accumulation of cAMP and/or cGMP due to the inhibition of phosphodiesterase in the aorta whereas, in ileal smooth muscle, papaverine inhibits smooth muscle contraction mainly by the inhibition of mitochondrial respiration.  相似文献   

8.
1. The aim of the current study was to characterize the ET receptor subtypes in cultured airway smooth muscle cells derived from rat trachea and human bronchus using radioligand binding techniques and to investigate the coupling of ET receptors to intracellular calcium signalling mechanisms using endothelin receptor-selective agonists (sarafotoxin S6c) and antagonists (BQ-123, BQ-788) and digital image fluorescence microscopy. 2. Confluent rat airway smooth muscle cells in culture possessed a mixed ET receptor population (30% ETA : 70% ETB), with a density of approximately 3400+/-280 ETA and 8000+/-610 ETB receptors/cell (n = 3 experiments). The density of ETB, but not ETA receptors increased substantially in serum-containing medium. However, a 2-day period of serum deprivation, which inhibited cellular growth, substantially reduced ETB receptor density such that the ET receptor subtype proportions were approximately equal (55% ETA; 45% ETB) and similar to those previously observed in intact rat tracheal smooth muscle. 3. Challenge of rat airway smooth muscle cells in culture with endothelin- 1 elicited a concentration-dependent biphasic increase in [Ca2+]i (EC50: 16 nM), that comprised an initial transient peak [Ca2+]i increase (typically 350 nM) followed by a modest sustained component. The endothelin-1-induced biphasic [Ca2+]i increase was primarily due to ETA receptor activation, although a modest and inconsistent ETB response was observed. The ETA-mediated [Ca2+]i increase was due primarily to the mobilization of IP3-sensitive and to a lesser extent ryanodine-sensitive intracellular calcium stores. In contrast, ETB receptor activation was exclusively coupled to extracellular calcium influx. 4. Somewhat surprisingly, human airway smooth muscle cells in culture contained a homogeneous population of ETA receptors at a density of 6100+/-800 receptors cell(-1) (n = 3 experiments). Serum deprivation was without effect on either ET receptor subtype proportion or ETA receptor density. Challenge of human airway smooth muscle cells with endothelin-1 provoked a concentration-dependent increase in [Ca2+]i (EC50: 15 nM), with a peak [Ca2+]i increase to greater than 700 nM. Furthermore, the ETA-mediated calcium response in these human airway smooth muscle cells in culture was entirely dependent upon the mobilization of calcium from intracellular stores. 5. In summary, rat cultured tracheal airway smooth muscle cells contained both ETA and ETB receptors. ETA receptors, the numbers of which remained constant during cell growth, were linked to the release of Ca2+ from intracellular stores and a strong rise in [Ca2+]i in the majority of airway smooth muscle cells. In stark contrast, the numbers of ETB receptors increased significantly during cell growth, an effect that was diminished substantially by incubation in serum-free medium. Moreover, despite the greater number of ETB receptors, their activation in a small number of airway smooth muscle cells produced only a weak rise in [Ca2+]i, which appeared to be attributable to the influx of extracellular Ca2+. In contrast, the populations of ET receptors and their linkage to [Ca2+]i were markedly different in the human cultured airway smooth muscle cells used in the current study compared to that previously observed in intact human isolated bronchial smooth muscle.  相似文献   

9.
In response to extracellular application of 50 microM ATP, all individual porcine aortic smooth muscle cells respond with rapid rises from basal [Ca2+]i to peak [Ca2+]i within 5 s. The time from stimulus to the peak of the [Ca2+]i response increases with decreasing concentration of ATP. At ATP concentrations of 0.5 microM and below, the time to the [Ca2+]i peak varies more significantly from cell to cell than at higher concentrations, and each cell shows complicated initiation and decay kinetics. For any individual cell, the lag phase before a response decreases with increasing concentration of ATP. An increase in lag time with decreasing ATP concentration is also observed in the absence of extracellular Ca2+, but the lag phase is more pronounced, especially at concentrations of ATP below 0.5 microM. Whole-cell patch-clamp electrophysiology shows that in porcine aortic smooth muscle cells, ATP stimulates an inward current carried mainly by Cl- ion efflux with a time course similar to the [Ca2+]i changes and no detectable current from an ATP-gated cation channel. A simple signal cascade initiation kinetics model, starting with nucleotide receptor activation leading to IP3-mediated Ca2+ release from IP3-sensitive internal stores, fits the data and suggests that the kinetics of the Ca2+ response are dominated by upstream signal cascade components.  相似文献   

10.
1. The mechanisms of vascular tone regulation by extracellular uridine 5'-triphosphate (UTP) were investigated in bovine middle cerebral arterial strips. Changes in cytosolic Ca2+ concentration ([Ca2+]i) and force were simultaneously monitored by use of front-surface fluorometry of fura-2. 2. In the arterial strips without endothelium, UTP (0.1 microM-1 mM) induced contraction in a concentration-dependent manner. However, when the endothelium was kept intact, cumulative application of UTP (0.1-100 microM) (and only at 1 mM) induced a modest phasic contraction in arterial strips. This endothelium-dependent reduction of the UTP-induced contraction was abolished by 100 microM N omega-nitro-L-arginine (L-NOARG) but not by 10 microM indomethacin. In the presence of intact endothelium, UTP (30 microM) induced a transient relaxation of the strips precontracted with 30 nM U-46619 (a stable analogue of thromboxane A2), which was completely inhibited by pretreatment with L-NOARG but not with indomethacin. 3. In the endothelium-denuded strips, the contractile response to UTP was abolished by desensitization to either ATP gamma S or ATP (P2U receptor agonists), but not by desensitization to alpha, beta-methylene-ATP (P2x receptor agonist) or to 2-methylthio-ATP (P2Y receptor agonist). Desensitization to UTP abolished the contractile response to ATP. 4. In the endothelium-denuded artery, a single dose application of UTP induced an initial transient, and subsequently lower but sustained increase in [Ca2+]i and force. In the absence of extracellular Ca2+, UTP induced only the initial transient increases in [Ca2+]i and force, while the sustained increases in [Ca2+]i and force were abolished. UTP (1 mM) had no effect on the basic [Ca2+]i-force relationship obtained on cumulative application of extracellular Ca2+ at steady state of 118 mM K(+)-depolarization-induced contraction. 5. We conclude that in the presence of an intact endothelium, UTP-induced relaxation of preconstricted middle cerebral artery is mainly mediated indirectly, by the production of an endothelium-derived relaxing factor, but at high doses of UTP, vascular smooth muscle contraction is mediated directly via activation of P2U purinoceptor and [Ca2+]i elevation without Ca(2+)-sensitization of the contractile apparatus. UTP may thus exert a dual regulatory effect upon cerebrovascular tone, but in cases where the endothelium is impaired, it may also act as a significant vasoconstrictor.  相似文献   

11.
The effects of adrenomedullin (AM), a hypotensive peptide, were investigated in cultured human oligodendroglial cell line KG-1C. Human AM increased the intracellular Ca2+ concentration ([Ca2+]i) at concentrations greater than 10(-7) M. Human calcitonin gene-related peptide (CGRP), a peptide structurally related to AM, also increased [Ca2+]i with a potency similar to that of AM. AM increased [Ca2+]i in the absence of extracellular Ca2+. Further, AM increased inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) level in a concentration-dependent manner similar to that of AM-induced [Ca2+]i, suggesting that AM-induced elevation of [Ca2+]i is due to Ca2+ release from Ins(1,4,5)P3-sensitive stores. AM (10(-9) to 10(-6) M) increased cAMP in a concentration-dependent manner. Forskolin also increased cAMP, but did not mimic the [Ca2+]i-raising effect of AM. These findings suggest that functional AM receptors are present in oligodendroglial KG-1C cells and that AM increases [Ca2+]i through a mechanism independent of cAMP.  相似文献   

12.
The precise mechanisms by which nitric oxide (NO) decreases free [Ca2+]i, inhibits Ca2+ influx, and relaxes vascular smooth muscle are poorly understood. In rabbit and mouse aorta, agonist-induced contractions and increases in [Ca2+]i were resistant to nifedipine, suggesting Ca2+ entry through non-L-type Ca2+ channels. Relaxations to NO were inhibited by thapsigargin (TG) or cyclopiazonic acid (CPA) indicating the involvement of sarcoplasmic reticulum ATPase (SERCA). Studies of the effect of NO on [Ca2+]i and the rate of Mn2+ influx with fura-2 fluorometry in rabbit aortic smooth muscle cells in primary culture were designed to test how SERCA is involved in mediating the response to NO. When cells were stimulated with angiotensin II (AII), NO accelerated the removal of Ca2+ from the cytoplasm, decreased [Ca2+]i, and inhibited Ca2+ and Mn2+ influx. Inhibition of SERCA abolished all the effects of NO. In contrast, inhibition of the Na+/Ca2+exchanger or the plasma membrane Ca2+ ATPase had no influence on the ability of NO to decrease [Ca2+]i. NO maximally decreased [Ca2+]i within 5 s, whereas significant inhibition of AII-induced Ca2+ and Mn2+ influx required more than 15 s. The inhibition of cation influx strictly depended on [Ca2+]o and functional SERCA, suggesting that during the delay before NO inhibits Ca2+ influx, the influx of Ca2+ and the uptake into intracellular stores are required. In the absence of [Ca2+]o, NO diminished the AII-induced [Ca2+]i transient by a SERCA-dependent mechanism and increased the amount of Ca2+ in the stores subsequently released by ionomycin. The present study indicates that the initial rapid decrease in [Ca2+]i caused by NO in vascular smooth muscle is accounted for by the uptake of Ca2+ by SERCA into intracellular stores. It is proposed that the refilling of the stores inhibits store-operated Ca2+ influx through non-L-type Ca2+ conducting ion channels and that this maintains the decrease in [Ca2+]i and NO-induced relaxation.  相似文献   

13.
In this study, the aorta vasorelaxant, coronary calcitonin gene-related peptide (CGRP) releasing, and atrial contractility effects of glyceryl nonivamide (GLNVA) were investigated in guinea pigs. In the isolated thoracic aorta, although GLNVA (0.01-50 microM) concentration dependently induced endothelium-independent relaxations and relaxed phenylephrine-(1.0 microM) induced contractions, it failed to relax 80 mM KCI-induced contractions. The GLNVA (1.0 microM) relaxation response in the aorta was significantly inhibited by tetraethylammonium (2.5-10 mM) or ouabain (5.0 microM) and was attenuated by increased extracellular potassium gradient (10-30 mM). Glibenclamide (0.01-10 microM) dose dependently antagonized the GLNVA relaxant effect. In the isolated perfused guinea pig heart, GLNVA (0.1-10 microM) increased CGRP-like immunoreactivity outflow from coronary circulation in a concentration-dependent manner. In the isolated right and left guinea pig atria, GLNVA (0.01-10 microM) produced concentration-dependent positive inotropic and chronotropic effects, but these effects were inhibited by pretreatments with ruthenium red (1.0 microM), capsazepine (10 microM), human calcitonin-gene-related peptide (CGRP(8-37)) (1.0 microM) and sensory neuron denervation, respectively. Based on these findings, we suggest that CGRP may be released by GLNVA from cardiovascular sensory neuron, and it then activates CGRP receptors on the coronary artery and atrium. The GLNVA-induced vasorelaxant effect in the vascular smooth muscle of the aorta is due to CGRP release associated K+ channel opening, and this effect eliminates capsaicin-derived excitability-associated K+ channel blocking activities.  相似文献   

14.
Prostaglandin F2alpha was tested to determine (a) whether its effect on intracellular Ca2+ levels ([Ca2+]i) and force in vascular smooth muscle was mediated through activation of the thromboxane A2 and/or prostaglandin receptor, and (b) the relative roles of Ca2+ influx via L-type and non-L-type Ca2+ channels in prostaglandin receptor-mediated contraction. [Ca2+]i and force were measured simultaneously in fura-2-loaded rat aortic strips. The thromboxane A2 receptor antagonist, SQ29548 ([1S]-1a,2b(5Z),3b,4a-7-(3-[2-[(phenylamino)carbonyl] hydrazinomethyl)-7-oxobicyclo-[2.2.1]hept-2-yl-5-heptenoic acid), prevented the prostaglandin F2alpha-induced plateau [Ca2+]i elevation and force by 80-90%, while abolishing these responses due to the thromboxane A2 receptor agonist, U46619 (9,11-dideoxy-9alpha,11alpha-methanoepoxy prostaglandin F2alpha). Prostaglandin F2alpha (+ SQ29548)-induced plateau [Ca2+]i elevation and force were not inhibited by verapamil. Ni2+, a non-selective cation channel blocker, in the presence of verapamil, abolished the prostaglandin F2alpha (+ SQ29548)-elevated [Ca2+]i, while the contraction was only partially inhibited. These results suggest that, in rat aorta, (1) elevated [Ca2+]i and force due to high prostaglandin F2alpha concentrations largely results from thromboxane A2 receptor activation, and (2) the prostaglandin component of the prostaglandin F2alpha-induced contraction is dependent on Ca2+ influx via non-L-type channels.  相似文献   

15.
Spinal and cranial motoneurons express alpha- and beta-calcitonin gene-related peptide (CGRP) mRNAs constitutively at variable ratios, and these two mRNAs are differentially regulated following axotomy in spinal, facial, and hypoglossal motoneurons. The purpose of this study was to investigate the change in CGRP mRNA expression following nerve injury in oculomotor, trochlear, abducens, and trigeminal motor nuclei in which beta-CGRP mRNA is predominantly expressed under normal conditions. Using male Sprague-Dawley rats, either the left eyeball and the orbital contents including the bulbar muscles were removed, or the left masseter nerve was ligated and transected. The rats were allowed to survive for 1, 3, 7, 14, 28, 56 days following these procedures. The levels of mRNAs for alpha- and beta-CGRP and growth-associated protein (GAP)-43 were analyzed by in situ hybridization histochemistry using 35S-labeled oligonucleotide probes. Following nerve injury, the expression of alpha-CGRP mRNA rapidly increased on the directly-injured side in all of these nuclei. Thereafter, it gradually decreased and returned to about the control level at postoperative day 56 within oculomotor, trochlear, and abducens motoneurons, but it sustained at a high level within trigeminal motoneurons. The expression of beta-CGRP was quite variable among these nuclei, and significant changes were also seen on the side contralateral to the directly-injured side. These data indicate that the up-regulation of alpha-CGRP mRNA may be a common response of cranial motor neurons following axotomy even if the constitutive expression of beta-CGRP mRNA exceeds that of alpha-CGRP mRNA in these neurons.  相似文献   

16.
The present study elucidated the precise mechanism of 5-hydroxytryptamine (5-HT)-induced increase of intracellular Ca2+ concentration ([Ca2+]i) in cultured vascular smooth muscle cells isolated from rat aortic media. [Ca2+]i was measured using fluorescent Ca2+ indicator, fura-2. 5-HT caused a dose-dependent increase in [Ca2+]i, which was completely inhibited by ketanserin. alpha-Methyl-5-HT had an equipotent effect to 5-HT. Diltiazem at 10 microM partially suppressed the 5-HT-induced increase in [Ca2+]i. 5-HT also augmented Mn2+ influx, when monitored by Mn2+ quenching of fura-2 fluorescence. When extracellular Ca2+ (1.3 mM) was removed, a decrease in resting level and a small, transient increase in [Ca2+]i were observed. 5-HT stimulation also induced an increase in the production of inositol triphosphate. 5-HT-induced increase in [Ca2+]i was significantly, but partially inhibited by staurosporin and H-7. Phorbol 12-myristate 13-acetate induced an increase in [Ca2+]i, which was abolished by removal of extracellular Ca2+. 5-HT-induced increase in [Ca2+]i was not affected by the pretreatment with pertussis toxin (PTX), and was not accompanied by a change in cyclic AMP content. These results suggest that, in cultured rat aortic smooth muscle cells, 5-HT increases [Ca2+]i via 5-HT2 receptor subtype by inducing influx of extracellular Ca2+ partially through L-type voltage-dependent Ca2+ channel, as well as by mobilizing Ca2+ from its intracellular stores. Activation of protein kinase C may be positively involved in the regulatory mechanism of Ca2+ influx, but PTX-sensitive G protein and cyclic AMP seem to be not involved.  相似文献   

17.
While insulin is known to promote vascular smooth muscle (VSM) relaxation, it also enhances endothelin-1 (ET-1) secretion and action in conditions such as NIDDM and hypertension. We examined the effect of insulin pretreatment on intracellular free calcium ([Ca2+]i) responses to ET-1 in cultured aortic smooth muscle cells (ASMCs) isolated from Sprague-Dawley (SD) rats and measured ET(A) receptor characteristics and ET-1-evoked tension responses in aorta obtained from insulin-resistant, hyperinsulinemic Zucker-obese (ZO) and control Zucker-lean (ZL) rats. Pretreatment of rat ASMCs with insulin (10 nmol/l for 24 h) failed to affect basal [Ca2+]i levels but led to a significant increase in peak [Ca2+]i response (1.7-fold; P < 0.01) to ET-1. The responses to IRL-1620 (an ET(B) selective agonist), ANG II, and vasopressin remained unaffected. ET-1-evoked peak [Ca2+]i responses were significantly attenuated by the inclusion of the ET(A) antagonist, BQ123, in both groups. The ET(B) antagonist, BQ788, abolished [Ca2+]i responses to IRL-1620 but failed to affect the exaggerated [Ca2+]i responses to ET-1. Saturation binding studies revealed a twofold increase (P < 0.01) in maximal number of binding sites labeled by 125I-labeled ET-1 in insulin-pretreated cells and no significant differences in sites labeled by 125I-labeled IRL-1620 between control and treatment groups. Northern blot analysis revealed an increase in ET(A) mRNA levels after insulin pretreatment for 20 h, an effect that was blocked by genistein, actinomycin D, and cycloheximide. Maximal tension development to ET-1 was significantly greater (P < 0.01), and microsomal binding studies using [3H]BQ-123 revealed a twofold higher number of ET(A) specific binding sites (P < 0.01) in aorta from ZO rats compared with that of ZL rats. These data suggest that insulin exaggerates ET-1-evoked peak [Ca2+]i responses via increased vascular ET(A) receptor expression, which may contribute to enhanced vasoconstriction observed in hyperinsulinemic states.  相似文献   

18.
Smooth muscle contraction is primarily regulated not only by changes in cytosolic Ca2+ concentrations ([Ca2+]i) but also by changes in the force/[Ca2+]i ratio. The use of membrane-permeabilization technique facilitated demonstration of an increase in the level of force at constant [Ca2+]i (Ca2+ sensitization). It was clarified that Rho-associated kinase (Rho-kinase) is a novel mediator of Ca2+ sensitization of the smooth muscle contraction, by introducing the recombinant catalytic domain of Rho-kinase into the cytosol of vascular smooth muscle permeabilized with beta-escin. This review article focuses on novel mechanisms, by which activation of receptor-coupled G-protein(s) increases Ca2+ sensitivity of the contractile apparatus in smooth muscle: Rho-kinase and protein kinase C.  相似文献   

19.
Endothelial cells produce C-type natriuretic peptide (CNP), which has been proposed as an endothelium-derived hyperpolarizing factor. In porcine coronary arteries, we investigated the vasodilatory effects of CNP and compared them with endothelium-dependent relaxations and hyperpolarizations to bradykinin. Isolated epicardial porcine coronary arteries were studied in organ chambers, and concentration-response curves to CNP and bradykinin were obtained. Membrane potential was measured in endothelial cells and smooth muscle of intact porcine coronary arteries during stimulation with CNP or bradykinin. In precontracted porcine coronary arteries with or without endothelium, CNP (10[-10]-10[-6] M) evoked relaxations (maximum, 42 +/- 4%) smaller than those evoked by bradykinin (100 +/- 1%), blunted in preparations contracted by KCl instead of U46619 (9,11-dideoxy-11a,9a-epoxymethano-prostaglandin F2alpha; p < 0.05) and unaffected by inhibition of NO synthase (NS). CNP evoked hyperpolarization of vascular smooth muscle of similar magnitude in endothelium-intact (-4.4 +/- 1 mV) and endothelium-denuded (-4.6 +/- 1 mV) porcine coronary arteries. Bradykinin (10[-10]-10[-6] M) evoked concentration-dependent relaxations in preparations with endothelium only. Although atrial natriuretic peptide-receptor antagonist HS-142-1 (25 microM) slightly reduced the sensitivity to bradykinin (log shift at IC50, twofold; p < 0.05), it had no effect on the maximal response to bradykinin. Inhibition of NO synthase partially attenuated, whereas high potassium chloride (30 mM) markedly inhibited relaxations to bradykinin (p < 0.05). Hyperpolarization to bradykinin was much more pronounced than that to CNP (-17 +/- 3 mV; p < 0.05 vs. CNP) and was observed in endothelium-intact preparations only and unaffected by HS-142-1. In conclusion, in contrast to bradykinin, CNP induces endothelium-independent and weaker relaxation and hyperpolarization of coronary artery vascular smooth muscle, suggesting that CNP is an unlikely mediator of endothelium-dependent hyperpolarization of porcine coronary arteries.  相似文献   

20.
BACKGROUND: A reduction in oxygen tension in the lungs is believed to inhibit a voltage-dependent K+ (Kv) current, which is thought to result in membrane depolarization leading to hypoxic pulmonary vasoconstriction (HPV). However, the direct mechanism by which hypoxia inhibits Kv current is not understood. METHODS AND RESULTS: Experiments were performed on rat pulmonary artery resistance vessels and single smooth muscle cells isolated from these vessels to examine the role of Ca2+ release from intracellular stores in initiating HPV. In contractile experiments, hypoxic challenge of endothelium-denuded rat pulmonary artery resistance vessels caused either a sustained or transient contraction in Ca2+-containing or Ca2+-free solution, respectively (n=44 vessels from 11 animals). When the ring segments were treated with either thapsigargin (5 micromol/L), ryanodine (5 micromol/L), or cyclopiazonic acid (5 micromol/L) in Ca2+-containing or Ca2+-free solution, a significant increase in pulmonary arterial tone was observed (n=44 vessels from 11 animals). Subsequent hypoxic challenge in the presence of each agent produced no further increase in tone (n=44 vessels from 11 animals). In isolated pulmonary resistance artery cells loaded with fura 2, hypoxic challenge, thapsigargin, ryanodine, and cyclopiazonic acid resulted in a significant increase in [Ca2+]i (n=18 cells from 6 animals) and depolarization of the resting membrane potential (n=22 cells from 6 animals). However, with prior application of thapsigargin, ryanodine, or cyclopiazonic acid, a hypoxic challenge produced no further change in [Ca2+]i (n=18 from 6 animals) or membrane potential (n=22 from 6 animals). Finally, application of an anti-Kv1.5 antibody increased [Ca2+]i and caused membrane depolarization. Subsequent hypoxic challenge resulted in a further increase in [Ca2+]i with no effect on membrane potential (n=16 cells from 4 animals). CONCLUSIONS: In rat pulmonary artery resistance vessels, an initial event in HPV is a release of Ca2+ from intracellular stores. This rise in [Ca2+]i causes inhibition of voltage-dependent K+ channels (possibly Kv1.5), membrane depolarization, and an increase in pulmonary artery tone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号