首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
采用化学沉淀法制备沉积于碳纳米管(CNTs)表面上的CuO、Fe2O3复合催化剂.用光电子能谱(XPS)对复合催化剂进行表征,研究了CuO/CNTs和Fe2O3/CNTs复合催化剂对含高氯酸钾烟火药剂分解反应的影响.结果表明,CuO和Fe2O3颗粒均匀地附着在碳纳米管表面上,Cuo/CNTs和Fe3O3/CNTs复合催化剂能够提高含高氯酸钾烟火药剂的反应速率,复合催化剂对高氯酸钾烟火药剂的催化性能明显优于Fe2O3和CuO混合物的催化性能.  相似文献   

2.
Fe2O3/CNTs纳米粒子的制备及其对高氯酸铵燃速的催化作用   总被引:6,自引:1,他引:6  
采用液相沉淀法制备沉积于碳纳米管(CNTs)表面的Fe2O3复合纳米催化剂,用透射电子显微镜(TEM)和光电子能谱(XPS)对制备的Fe2O3/CNTs复合纳米催化剂进行表征,研究了Fe2O3/CNTs复合纳米催化剂对高氯酸铵(AP)燃烧的催化性能。结果表明,纳米级Fe2O3颗粒均匀包覆在CNTs表面,Fe2O3/CNTs复合纳米催化剂能明显降低AP的分解温度,提高AP单元推进剂的燃速;Fe2O3/CNTs复合纳米催化剂对AP的催化活性明显优于纳米Fe2O3、纳米Fe2O3和CNTs的简单混合催化剂。  相似文献   

3.
以碳纳米管(CNTs)为载体,金属镍为活性组分,用化学镀镍法制备了镀镍碳纳米管(Ni/CNTs)催化剂,通过扫描电子显微镜和能量散射光谱仪(SEM/EDS)分析方法对催化剂进行表征,利用"湿-干多相态"反应模式研究了其催化环己烷脱氢反应过程,考察了温度、环己烷用量与催化剂用量之比对反应的影响。结果表明,镀液pH为5.2~2.0条件下制备的催化剂的镍颗粒较小且分散性较好,对环己烷脱氢具有良好的催化作用,脱氢生成苯和氢气的选择性可达100%。多相态模式下,在较佳的反应条件即523K,1mL·g-1环己烷/催化剂用量时,环己烷的脱氢转化率可达68.7%。但对Ni/CNTs重复使用四次的研究发现,随着使用次数的增加,催化脱氢活性不断降低。对反应前后催化剂进行SEM检测和实验过程的分析发现,催化剂失活是由催化剂表面镍颗粒脱落引起的。  相似文献   

4.
以浓硝酸酸化后的多壁碳纳米管(CNTs)为原料,PdCl_2为前体,甲醛为还原剂,采用化学浸渍法制备了5%Pd/CNTs催化剂。通过ICP、XRD、BET、TEM对其进行表征,证实5%的钯纳米粒子成功负载在CNTs管外壁上,钯纳米粒子的平均粒径为4.30nm。在合成Pd/CNTs催化剂的基础上,研究了温和条件下其对4-氯苯酚(4-CP)的液相催化加氢去氯(HDC)规律。考察了体系反应温度、催化剂用量、NaOH用量、反应底物浓度对4-CP降解速率的影响,建立了动力学模型。得到了最佳反应条件:反应温度40℃,催化剂用量20mg,Cl~–、OH~–摩尔比1∶1.1;Pd/CNTs对4-CP加氢去氯反应为零级反应,反应活化能为E_a=40.12k J/mol,指前因子A=1.66×10~7mol/(L·min)。  相似文献   

5.
通过高温焙烧和氢氟酸瞬间蚀刻修饰堇青石蜂窝陶瓷骨架和孔壁表面结构,采用XRD、SEM、TEM表征修饰前后结构和形貌变化,探究陶瓷结构对机械强度、碳纳米管形貌结构及复合载体性质的影响,考察Pd/CNTs@CHC-HFn催化剂催化聚苯乙烯(PS)加氢性能及催化剂用量与加氢度的关系。结果表明,高温焙烧消除了骨架内部孔道,陶瓷表面变得平整密实;瞬间蚀刻增大了表面粗糙度,易于CNTs在表面生长,但蚀刻次数增加,导致蚀刻由表面向骨架内部侵入、CNTs在骨架内部生长,降低载体的机械强度。CNTs@CHC-HFn载体表面的CNTs可显著提高复合催化剂的加氢性能,其中加氢活性位Pd分布均匀,平均粒径为3.6 nm,当催化剂用量为3.0 g cat·(g PS)~(-1)时,其中含0.378 g CNTs和0.054 g Pd,反应6 h加氢度可达100%。  相似文献   

6.
采用Fe2O3-V2O5二元固体酸催化剂,对哈密风化煤通过水热法催化氧化工艺制备腐植酸。通过正交实验对催化氧化工艺条件进行了优化,并且采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、热重分析(TGA)研究了Fe2O3-V2O5二元固体酸催化剂的微观结构及形貌。结果表明:在酸煤比2∶l(m L/g),反应温度100℃,反应时间0.5 h,催化剂Fe2O3-V2O5用量为2%时腐植酸产率可达73.6%,比碱溶酸析工艺处理的风化煤中腐植酸产率提高了9.6%,表明水热法催化氧化工艺能明显提高腐植酸的产率。微观结构分析表明,Fe2O3-V2O5二元固体酸催化剂结晶性较好,同时具有良好的分散性和热稳定性。  相似文献   

7.
为实现苯一步羟基化直接合成苯酚的绿色工艺路线,基于高温热分解法制备了Fe3O4/碳纳米管(CNTs)复合催化剂应用于H2O2为氧化剂的苯羟基化制苯酚反应。采用单因素法考察了H2O2及催化剂用量对反应的影响,并评估了催化剂的重复使用性能。采用X射线衍射(XRD)、透射电子显微镜(TEM)、傅里叶红外光谱(FTIR)和振动样品磁强计(VSM)对催化剂的微观结构、磁性能进行了研究和分析。结果表明,负载于CNTs表面上的Fe3O4粒子是H2O2为氧化剂的苯羟基化制苯酚反应的主要活性组分;在Fe3O4/CNTs用量30 mg,H2O2 1.5 m L的条件下,反应90 min时苯转化率为26%,苯酚选择性为91%。  相似文献   

8.
肖剑  张颖心  尤玉静 《应用化工》2014,(9):1605-1607
以硝酸铋、溴化钠和CNTs为原料,采用醇热法制备BiOBr/CNTs复合管光催化剂。采用场发射扫描电子显微镜(FESEM)对光催化剂的形貌进行了表征;以罗丹明废水溶液的降解为目标反应,考察了催化剂在可见光下的催化活性。结果表明,三维花球状BiOBr在可见光下有良好的光降解性能,加入CNTs后进一步提高了对光的吸收和利用,因此所制备的BiOBr/CNTs复合光催化剂表现出较高的光催化活性。  相似文献   

9.
以碳纳米管(CNTs)为载体,通过调控水热反应时间及温度负载NiCo颗粒,制备NiCo/CNTs复合催化剂。利用碳纳米管独特的中空管状结构、高比表面积以及良好的导电特性来负载高活性的NiCo颗粒,开发高性能析氧催化剂。利用激光拉曼、扫描电子显微镜、X射线衍射和电化学测试研究了水热反应温度与时间对NiCo/CNTs复合催化剂形貌、晶型结构及电化学性能的影响。结果表明,在130℃、24 h与150℃、8 h条件下制备的NiCo/CNTs复合催化剂的综合性能较为优异。  相似文献   

10.
通过高温焙烧和氢氟酸瞬间蚀刻修饰堇青石蜂窝陶瓷骨架和孔壁表面结构,采用XRD、SEM、TEM表征修饰前后结构和形貌变化,探究陶瓷结构对机械强度、碳纳米管形貌结构及复合载体性质的影响,考察Pd/CNTs@CHC-HFn催化剂催化聚苯乙烯(PS)加氢性能及催化剂用量与加氢度的关系。结果表明,高温焙烧消除了骨架内部孔道,陶瓷表面变得平整密实;瞬间蚀刻增大了表面粗糙度,易于CNTs在表面生长,但蚀刻次数增加,导致蚀刻由表面向骨架内部侵入、CNTs在骨架内部生长,降低载体的机械强度。CNTs@CHC-HFn载体表面的CNTs可显著提高复合催化剂的加氢性能,其中加氢活性位Pd分布均匀,平均粒径为3.6 nm,当催化剂用量为3.0 g cat·(g PS)-1时,其中含0.378 g CNTs和0.054 g Pd,反应6 h加氢度可达100%。  相似文献   

11.
Low temperature growth process of carbon nanotubes (CNTs) over bi-metallic (Co–Fe) and tri-metallic (Ni–Co–Fe) catalysts on Si/Al/Al2O3 substrates is carried out from acetylene precursor using hydrogen, ammonia or nitrogen as a carrier in a low pressure chemical vapor deposition system. Using the tri-metallic Ni–Co–Fe catalyst template, vertically aligned CNTs of ~700 nm length could be grown already at 450 °C within 10 min using ammonia as a carrier. Within the same period of time, on bi-metallic Co–Fe catalyst templates, ~250 nm long aligned nanotubes emerged already at 400 °C in nitrogen carrier. At low temperatures most of the catalyst materials were elevated from the support by the grown nanotubes indicating tip growth mechanism. The structure of catalyst layers and nanotube films was studied using scanning and transmission electron microscopy and atomic force microscopy.  相似文献   

12.
Production of novel porous material is a major target in current material science research due to its wide applications. As carbon nanotube (CNTs) is a one dimensional hollow structure it is also one of the promising materials in applications ranging from electronics to hydrogen storage medium. Catalytic chemical vapor deposition (CCVD) is a method whereby CNTs can be produced in large amount. Thus, in this work, we have synthesized CNTs via pyrolysis of acetylene using various supported transition-metal catalysts in a fixed-bed reactor. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to investigate the CNTs structure. The structures of nanotubes formed by acetylene pyrolysis were dependent on the catalysts used. It was found that alumina supported Ni/Fe catalyst inhibited the formation of CNTs growth while alumina supported Ni/Co catalyst gave high density of CNTs. However, nanotubes grown over alumina supported Ni/Fe catalyst were less dense due to the deactivation of the catalyst at the early stage of the pyrolysis process.  相似文献   

13.
Production of novel porous material is a major target in current material science research due to its wide applications. As carbon nanotube (CNTs) is a one dimensional hollow structure it is also one of the promising materials in applications ranging from electronics to hydrogen storage medium. Catalytic chemical vapor deposition (CCVD) is a method whereby CNTs can be produced in large amount. Thus, in this work, we have synthesized CNTs via pyrolysis of acetylene using various supported transition-metal catalysts in a fixed-bed reactor. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to investigate the CNTs structure. The structures of nanotubes formed by acetylene pyrolysis were dependent on the catalysts used. It was found that alumina supported Ni/Fe catalyst inhibited the formation of CNTs growth while alumina supported Ni/Co catalyst gave high density of CNTs. However, nanotubes grown over alumina supported Ni/Fe catalyst were less dense due to the deactivation of the catalyst at the early stage of the pyrolysis process.  相似文献   

14.
Carbon nanotubes (CNTs) were fabricated by Chemical Vapour Depositon using a C2H2/H2 mixture. They were grown on Si/SiO2 substrate with Fe film as catalyst, deposited using thermal evaporation technique. The aim of this work is to emphasize the role of the Fe catalyst and the C2H2/H2 flow rate ratio to grow vertically aligned CNTs. Fe metal samples with the deposition times ranging from 1 min to 16 min were deposited and CNTs were grown with different C2H2/H2 flow rate ratio, from 5/95 to 30/70 by thermal CVD at 750 oC. Results show that CNTs were not vertically aligned with the longest catalyst deposition time for all flow rate ratios, while CNTs were always vertically aligned for deposition time less than 4 min and vertically aligned only for a C2H2 flow rate greater than 20% for the 7 min catalyst deposition time. Morphological and structural information about CNTs and Fe metal clusters were provided by field emission gun-scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). An accurate balance between the Fe metal clusters density and the C2H2/H2 flow rate ratio favours to achieve of a good vertical alignment  相似文献   

15.
Carbon nanotubes (CNTs) were fabricated by Chemical Vapour Depositon using a C2H2/H2 mixture. They were grown on Si/SiO2 substrate with Fe film as catalyst, deposited using thermal evaporation technique. The aim of this work is to emphasize the role of the Fe catalyst thickness and the C2H2/H2 flow rate ratio to grow vertically aligned CNTs by thermal CVD. In order to investigate these aspects, four Fe metal films with thickness of 2.5, 3.5, 7.5 and 16 nm were deposited on Si/SiO2 substrate and CNTs were grown with different C2H2/H2 flow rate ratios, from 5/95 to 30/70 by thermal CVD at 750 °C. Results showed that CNTs were not vertically aligned with 16 nm catalyst thickness for all flow rate ratios, while CNTs were always vertically aligned for iron thickness less than 3.5 nm and vertically aligned only for a C2H2/H2 flow rate ratio greater than 20/70 for the 7.5 nm catalyst thickness. Morphology and structural information about CNTs and Fe metal clusters were provided by field emission gun-scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). Our results also indicate that for each flow rate ratio exists a critical thickness of iron catalyst under which vertically aligned CNTs are obtained.  相似文献   

16.
Yu Hao  Qian Weizhong  Luo Guohua 《Carbon》2003,41(14):2855-2863
Agglomerated carbon nanotubes (CNTs) were synthesized by catalytic pyrolysis of propylene on Fe/Mo/Al2O3 catalysts in a nano-agglomerate fluidized-bed reactor (NAFBR) of 196 mm I.D. The macroscopic properties and microstructure of the CNTs and their evolution were systematically characterized by high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. The CNTs from the NAFBR are sub-agglomerates entangled with each other. Their formation involves the initial fragmentation of the catalyst support, sub-agglomerate formation and expansion of the agglomerates due to CNT growth. When the structure of the catalysts is destroyed, the release of stress inside the catalyst particles will result in structural defects in the CNT shells. More perfect CNTs are obtained in fully developed agglomerates. A model is proposed to explain the process of agglomerate formation and based on its formation mechanism, an approach to control CNT quality in an NAFBR is proposed.  相似文献   

17.
The growth of carbon nanotubes (CNTs) in the pores of expanded graphite by chemical vapor deposition with and without a catalyst was investigated and their microstructure was studied by scanning electron microscopy. Results show that pores of the expanded graphite, which can load catalyst particles, is the physical base for the growth of CNTs. Co(NO3)2 is better than Fe(NO3)3 and Ni(NO3)2 when used to immerse expanded graphite. The optimum catalyst concentration is 0.025 mol/L Co(NO3)2. The active edges of graphenes of freshly expanded graphite is a key factor for the growth of CNTs under non-catalytic conditions.  相似文献   

18.
A crystalline flake graphite electrode (GE) was impregnated with nickel particles using direct current electrochemical deposition. The particles were used for in situ growth of carbon nanotubes (CNTs) by flame synthesis with a liquid ethanol flame. The obtained electrode was characterized by X-ray diffraction, and scanning and transmission electron microscopy. The results showed that the deposited Ni catalyst crystal face was mainly (1 1 1). CNTs with a diameter of about 40 nm were uniformly grown on the GE surface. The electrochemical performance of the CNT–GE was characterized by cyclic voltammetry using a [Fe(CN)6]3−/[Fe(CN)6]4− solution, and showed a much greater electrochemical response than that obtained using a material in which CNTs were grown by catalytic chemical vapor deposition.  相似文献   

19.
姚延立  伊厚会 《化工学报》2011,62(1):281-286
采用化学气相沉积法(CVD)以二茂铁为催化剂,乙炔为碳源制备了Fe/洋葱状富勒烯(Fe/onion-like fullerenes, Fe/OLFs),通过场发射扫描电子显微镜(FESEM)、高分辨透射电镜(HRTEM )和X射线衍射(XRD)分析了Fe/OLFs的晶体结构和形貌。结果表明,所制备的Fe/OLFs是由同心封闭壳层组成的准球形颗粒,其层间距为0.349 nm,与石墨的层间距0.336 nm相接近。在MRS-10A 型四球摩擦试验机上考察了相似文献   

20.
Carbon nanotubes (CNTs) were synthesized by catalytic decomposition of acetylene over Fe, Ni and Fe–Ni catalysts supported on alumina. The growth of CNTs was carried out at various reaction conditions. The growth density and diameter of CNTs could be controlled by varying the catalyst composition and the growth parameters. The growth density of CNTs increased with increasing the activation time of catalysts in H2 atmosphere and/or decreasing acetylene concentration. At 600°C, higher density of CNTs was observed at 60 min for higher Fe containing catalyst, whereas at 90 min for higher Ni containing catalyst. The growth density of CNTs highly increased with increasing reaction time from 30 to 60 min. For all the catalysts, the diameter of CNTs decreased with increasing growth time further mainly due to hydrogen etching. Bimetallic catalysts produced narrower diameter CNTs than single metal catalysts. The growth of CNTs followed the tip growth mode and the CNTs were multi-walled CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号