首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 957 毫秒
1.
采用自动化高速电弧喷涂系统,将自行研制的粉芯丝材在AZ91镁合金基体表面制备出2种Al基非晶纳米晶复合涂层。采用扫描电子显微镜(SEM)观察非晶纳米晶复合涂层横截面的微观形貌,利用XRD对非晶纳米晶复合涂层进行结构分析。结果表明,非晶纳米晶复合涂层是由非晶相和晶化相共同组成,涂层致密,孔隙少。Al-Ni-Y-Co涂层的维氏硬度值为3117.6MPa,Al-Ni-Mm-Fe涂层的维氏硬度值为3407.2MPa,约为传统Al-RE涂层的4倍左右,为AZ91镁合金基体的5倍左右。电化学试验结果表明,Al-Ni-Y-Co、Al-Ni-Mm-Fe涂层的耐蚀性优于传统Al-RE涂层和AZ91镁合金基体。  相似文献   

2.
铝基非晶纳米晶复合涂层研究   总被引:2,自引:0,他引:2  
采用自动化高速电弧喷涂系统,用自行研制的粉芯丝材,在AZ91镁合金基体表面上制备出Al-Ni-Y-Co非晶纳米晶复合涂层.采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)分析了Al-Ni-Y-Co非晶纳米晶复合涂层的微观形貌和组织结构,结果表明Al-Ni-Y-Co非晶纳米晶复合涂层是由非晶相和纳米晶化相共同组成的,涂层结构致密,孔隙率约为1.8%.Al-Ni-Y-Co非晶纳米晶复合涂层的平均显微Vickers硬度值为311.7 HV0 1,结合强度为26.8 MPa.涂层的抗磨损耐腐蚀性能优于Al涂层和AZ91镁合金基体;其相对耐磨性约为Al涂层的10倍,为AZ91镁合金的6倍;其自腐蚀电位值正于Al涂层及AZ91镁合金,自腐蚀电流密度值约为Al涂层的1/2,AZ91镁合金的1/5;其腐蚀后的表面形貌比Al涂层和AZ91镁合金平整,点蚀较少.Al-Ni-Y-Co非晶纳米晶复合涂层的耐磨防腐综合性能优异.  相似文献   

3.
Fe基非晶纳米晶涂层在油润滑条件下的耐磨损性能   总被引:1,自引:1,他引:0  
采用自动化高速电弧喷涂技术在AZ91镁合金基体上制备了厚度约为300μm的Fe基非晶纳米晶涂层。研究了Fe基非晶纳米晶涂层在油润滑条件下,不同速度(180r/min、300r/min、600r/min、900r/min、1200r/min)、载荷(2.5N、5N、10N、20N、30N)对涂层的摩擦磨损行为。采用扫描电镜、能谱分析仪、X射线衍射仪和透射电镜对涂层的组织结构进行了表征,利用纳米压痕仪对涂层的力学性能进行了分析。试验结果表明:Fe基非晶纳米晶涂层组织均匀、结构致密,氧化物含量和孔隙率低,主要由非晶相和纳米晶相组成;涂层具有较高的硬度(12.03GPa)和弹性模量(197.1GPa)。在载荷为30N、速度为300r/min、磨损时间为900s条件下,其相对耐磨性是3Cr13涂层的3倍。Fe基非晶纳米晶涂层的磨损失效机制为脆性疲劳剥落。  相似文献   

4.
以AZ91HP镁合金为研究对象,以纳米氧化硅为第二相粒子,通过纳米复合电沉积法制备AZ91HP镁合金Ni-SiO2纳米复合镀层。利用扫描电镜观察纳米复合镀层的显微形貌与微观结构,利用显微硬度计测定纳米复合镀层显微硬度,利用M200摩擦磨损试验机测试纳米复合镀层的耐磨性能。结果表明:在AZ91HP镁合金表面获得了结晶均匀、结构致密的Ni-SiO2纳米复合镀层;纳米复合镀层剖面形貌显示纳米复合镀层与镁合金基体结合良好;镀液中纳米颗粒含量为10g/L时,AZ91HP镁合金表面电沉积Ni-SiO2纳米复合镀层的显微硬度最高,最高达HV367;摩擦磨损试验表明纳米复合镀层与镀镍层、镁合金基体相比,耐磨性明显提高,这是由于纳米颗粒的细晶强化和弥散强化所致;纳米复合镀层的磨损机制主要是磨粒磨损,镁合金基体磨损机制为粘着磨损,镀镍层磨损机制为剥层磨损。  相似文献   

5.
激光工艺参数对镁合金非晶涂层制备的影响   总被引:4,自引:1,他引:3  
采用能量密度不同的两种工艺在AZ91HP镁合金表面激光熔覆Cu-Zr-Al非晶复合涂层.结果表明,激光能量密度分布均匀的矩形光斑所制备的合金涂层中不含非晶相,主要是由Cu、Zr、Mg组成的多种晶体相;而在激光能量密度集中分布的圆形光斑作用下,涂层形成了非晶加纳米晶复合相,非晶含量可高达60.56%,涂层的耐磨蚀性较矩形光斑所形成的晶体相涂层有所提高,而且所制备的非晶复合涂层的力学性能和化学性能显著高于原始镁合金.  相似文献   

6.
采用等离子喷涂和激光重熔复合工艺在AZ91D镁合金表面制备Al-Si-Cu合金涂层,利用扫描电子显微镜(SEM)、显微硬度计、摩擦磨损试验机等研究了涂层的微观组织、显微硬度与摩擦磨损性能。结果表明,激光重熔后涂层组织致密均匀,涂层与基体呈良好的冶金结合,涂层显微硬度约为基体的2.2倍,由于晶粒细化和硬质相的存在耐磨性较基体明显提高,重熔层的磨损机制主要为磨粒磨损。  相似文献   

7.
采用化学镀方法在AZ91D压铸镁合金表面获得N i-P镀层,研究了不同热处理温度对镀层的组织和性能的影响。结果表明:镍层中P含量为6.22 wt%,镀层组织为非晶+少量纳米晶组织。随热处理温度升高原始镀层中的非晶组织中先形成镍纳米晶,然后纳米晶镍伴随晶化过程进行迅速长大,并在镍基体上析出N i12P5和N i3P相。镀层与基体的结合强度在350℃附近达最大结合强度为3.7 MPa,镀层硬度在400℃附近达最大值为825 HV;盐雾腐蚀实验表明镀层耐腐蚀性能良好,连续盐雾8 h未出现腐蚀斑点。经过不同的热处理,镀层的耐蚀性随着热处理温度的提高而下降。  相似文献   

8.
目的 提高不锈钢基体的抗固体颗粒冲蚀性能.方法 在不锈钢基体表面,通过等离子体增强磁控溅射系统(PEMS),采用不同偏压工艺制备TiAlVSiCN纳米复合涂层.通过SEM、HRTEM观察涂层的微观形貌与组织,利用XRD、SAD分析涂层的物相组成与晶体结构,并通过划痕仪、纳米硬度计以及冲蚀试验机探究不同工艺涂层的结合强度、纳米硬度以及抗冲蚀性能差异.结果 采用PEMS制备出一系列不同偏压条件下的TiAlVSiCN涂层,涂层组织致密,呈柱状,主要包括纳米晶Ti(Al,V)(C,N)相和非晶相.偏压显著影响涂层的晶粒尺寸和非晶相分布,高偏压下的涂层主要由20~50 nm的Ti(Al,V)(C,N)纳米晶及其周围弥散分布的非晶相组成,而低偏压下的涂层主要由100 nm的Ti(Al,V)(C,N)纳米晶和连续分布的非晶相组成.高偏压下制备的涂层厚度超过20μm,纳米硬度可达(34.6±14.1)GPa,具有优良的结合强度(>65 N)和抗冲蚀性能,其抗冲蚀性能相比不锈钢基体提高近8倍.结论 通过与偏压参数的匹配控制,PEMS可有效调控纳米复合涂层的组织结构,实现硬度与弹性模量的良好匹配,制备出具有优良抗冲蚀性能、厚度达到20μm以上的TiAlVSiCN纳米晶-非晶复合涂层.  相似文献   

9.
为了提高AZ91D镁合金的耐蚀性能和显微硬度,通过电沉积方法制备Ti N纳米粒子掺杂的Ni-P-Ti N复合涂层。应用扫描电镜、能谱和XRD等手段研究涂层的表面、界面形貌和显微组成,并结合电化学方法研究涂层的耐蚀性能。研究结果表明,经过活化、浸锌和预镀层等系列复杂前处理,可有效提高镁合金在电镀液中的稳定性和涂层结合力,Ti N纳米粒子可以通过电沉积方式掺杂至Ni-P基体中。Ti N纳米颗粒和后续热处理可以有效提高Ni-P涂层的显微硬度。腐蚀结果表明Ni-P-Ti N复合涂层的耐蚀性能比裸AZ91D镁合金大幅增加。在短期浸泡内,Ni-P-Ti N的耐蚀性能与没有Ti N纳米粒子掺杂的Ni-P涂层相当,但Ti N纳米粒子对于提高复合涂层长期耐蚀性能具有重要影响。  相似文献   

10.
目的提高镁合金的耐腐蚀性能。方法采用超音速火焰喷涂技术,在AZ61镁合金表面引入Ni Cr Al作为中间层,最终在镁合金表面构筑一层铁基非晶涂层。通过扫描电子显微镜、X射线衍射仪、差热分析仪、显微硬度测试仪、开路电位测试仪、动电位极化测试仪、X射线光电子能谱仪和接触角测量仪,分别评价了镁合金基体和铁基非晶涂层的形貌特征、微观结构、热稳定性、力学性能、腐蚀行为和表面性质。结果在AZ61镁合金表面成功构筑了一层厚度约200~240μm的铁基非晶涂层,该涂层在XRD有效分辨率内呈单一非晶结构。热分析结果表明,该非晶涂层的起始晶化温度可达657℃,具有极高的热稳定性。铁基非晶涂层和AZ61镁合金的显微硬度分别为892HV和71HV,合金表面显微硬度提高了10倍以上。在模拟海水中,AZ61镁合金和铁基非晶防护涂层的稳态开路电位分别为-0.59V和-1.58V,自腐蚀电流密度分别为80μA/cm~2和4μA/cm~2;在酸雨介质中,镁合金和非晶涂层的稳态开路电位分别为-0.45 V和-1.51 V,自腐蚀电流密度分别为7.27μA/cm~2和1.64μA/cm~2。去离子水在AZ61镁合金的表面润湿角为(59.8±1.5)°,而铁基非晶涂层的接触角为(74.4±0.6)°。结论在镁合金表面构筑铁基非晶涂层,可以显著提高镁合金的耐蚀性,同时非晶涂层高的热稳定性和显微硬度,意味着良好的耐热和耐磨性能。  相似文献   

11.
The Al-based amorphous and nanocrystalline composite coatings with the composition of Al-Ni-Y-Co and Al-Ni-Mm-Fe were prepared on AZ91 Mg-based alloys by high velocity arc spraying technique(HVAS).The structure character of the coatings indicates that coatings contain the mixture of amorphous phases and crystalline and there are both less than 2%porosity.The electrochemical tests of the coatings and the substrate were studied.The coatings show the passivation ability during polarization,but AZ91 Mg-based alloys show little passivation.The corrosion current density of the coatings is lower than that of AZ91 Mg-based alloys.The results show that the coatings have an excellent corrosion resistance for AZ91 Mg-based alloys in 5 wt%NaCl solution.  相似文献   

12.
AZ91D镁合金化学镀Ni-P及Ni-W-P镀层的结构与耐蚀性   总被引:1,自引:0,他引:1  
在AZ91D镁合金上直接化学镀Ni-P和Ni-W-P镀层,并利用扫描电子显微镜、X射线衍射仪及电化学工作站研究后续热处理对化学镀层组织形貌、相组成及其耐蚀性的影响。结果表明,制备的Ni-P镀层为非晶态,而Ni-W-P镀层为纳米晶结构,两者在3.5%NaCl水溶液中的耐蚀性相当。热处理可以明显提高Ni-W-P镀层的耐蚀能力,但却稍微弱化Ni-P镀层的耐蚀能力,热处理后的Ni-W-P层自腐蚀电位相对于未处理的化学镀Ni-W-P或Ni-P层提高了约150 mV。  相似文献   

13.
To improve the wear and corrosion properties of AZ91D magnesium alloys, Cu-based amorphous composite coatings were fabricated on AZ91D magnesium alloy by laser cladding using mixed powders of Cu47Ti34Zr11Ni8 and SiC. The wear and corrosion behaviours of the coatings were investigated. The wear resistance of the coatings was evaluated under dry sliding wear condition at room temperature. The corrosion resistance of the coatings was tested in 3.5% (mass fraction) NaCl solution. The coatings exhibit excellent wear resistance due to the recombined action of amorphous phase and different intermetallic compounds. The main wear mechanisms of the coatings and the AZ91D sample are different. The former is abrasive wear and the latter is adhesive wear. The coatings compared with AZ91D magnesium alloy also exhibit good corrosion resistance because of the presence of the amorphous phase in the coatings.  相似文献   

14.
索忠源  邱克强  于波  武晓峰  任英磊 《铸造》2005,54(12):1227-1230
利用渗流铸造法分别制备了体积分数约为5%、10%的Ni60-Nb40非晶条带增强的AZ91镁合金复合材料,通过光学显微镜和扫描电镜观察了复合材料的结构和压缩时的断口形貌.结果发现:Ni60-Nb40非晶条带与AZ91镁合金界面润湿性状况较差,有部分分离现象.压缩试验表明:复合材料的屈服强度较AZ91镁合金屈服强度提高,但提高的幅度随着条带体积分数的增加而降低.材料的破坏方式也随条带数量的变化而变化,从应力-应变曲线和断口形貌等方面分析了材料的力学性能及其影响因素.  相似文献   

15.
The microarc oxidation coatings with difference thickness were synthesized on AZ91D magnesium alloy. The microstructure and phase structure of the coatings were analyzed using SEM and XRD, the tribological properties and corrosion resistance behaviour of the coatings were also investigated. The results show that the coating contains two layers, a porous outer layer and relatively dense inner layer. The microhardness of the MAO coatings is four to six times higher than that of the magnesium alloy substrate. The MAO coatings have much better wear-resistance and corrosion resistance abilities than those of magnesium alloy substrate, but possess higher friction coefficient. The results further indicate that there is an optimization thickness for corrosion and wear resistance.  相似文献   

16.
An organic-magnesium complex conversion (OMCC) coating on AZ91D magnesium alloy was obtained by treating in a solution containing organic compounds. SEM, FESEM and XPS were used to examine the surface morphology, thickness and structure of the conversion coatings. The results show that the continuous and uniform conversion coating is deposited on AZ91D alloy and the main component of the coatings is organic compound containing benzene ring, which forms a chemical bond with magnesium. The polarization measurement and salt spray test show that the corrosion resistance of the conversion coating is much higher than that of traditional chromate conversion coating.  相似文献   

17.
In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were added to fabricate Ni–P–TiN composite coating by electrodeposition. The surface, cross-section morphology and composition were examined using SEM, EDS and XRD, and the corrosion resistance was checked by electrochemical technology. The results indicate that TiN nanoparticles were doped successfully in the Ni–P matrix after a series of complex pretreatments including activation, zinc immersion and pre-electroplating, which enhances the stability of magnesium alloy in electrolyte and the adhesion between magnesium alloy and composite coating. The microhardness of the Ni–P coating increases dramatically by adding TiN nanoparticles and subsequent heat treatment. The corrosion experimental results indicate that the corrosion resistance of Ni–P–TiN composite coating is much higher than that of uncoated AZ91D magnesium alloy and similar with Ni–P coating in short immersion time. However, TiN nanoparticles play a significant role in long-term corrosion resistance of composite coatings.  相似文献   

18.
Protective surface coatings on an AZ91D magnesium alloy were formed in an atmosphere mixture of nitrogen and 1,1,1,2-tetrafluoroethane (HFC-134a). The surface composition and microstructure were characterized using X-ray diffraction analysis and scanning electron microscopy, respectively. The cross-section morphologies of the coatings show that an increase in conversion time results in an increase in the continuity and compactness of the coating generated on the surface of the AZ91D alloy. The corrosion resistance tests performed by immersion into 3.5% NaCl solutions were investigated by electrochemical measurements. The results showed that the coated samples had higher corrosion resistance than the uncoated alloy. On the other hand, the corrosion density of the coated samples decreased by increasing the conversion time by about two orders of magnitude, compared with the un-coated samples. This behaviour is attributed to the formation of a protective surface film constituted mainly for MgF2, together with other phases. The nature of these phases depends on the process conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号