首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
混凝沉降Fenton法处理保险粉废水的研究   总被引:1,自引:0,他引:1  
彭红星  贺平  姚峻 《辽宁化工》2003,32(5):193-195
采用混凝沉降Fenton法,对保险粉废水进行处理,筛选出最佳的混凝条件及氧化条件,实验发现,采用聚合氯化铝(PAC)和活性硅酸复合混凝该废水,在pH为6,PAC和活性硅酸投加量分别为7‰、6‰时混凝效果较好。混凝后的废水用Fenton法处理,在pH4,投加27.5%的双氧水40mL/L废水,反应温度70-80℃,反应时间为90min,取得了满意的效果,其COD总去除率为88.34%。  相似文献   

2.
微波辐射-均相Fenton氧化耦合混凝法处理印染废水   总被引:11,自引:0,他引:11  
将微波污水处理技术、均相Fenton氧化和传统混凝工艺结合起来对成分复杂的印染废水进行了强化处理。结果表明,微波辐射-均相Fenton氧化耦合混凝法特别适合于处理复杂印染废水,在H2O2和FeSO4.7H2O的质量浓度分别为4.8 g/L和0.08 g/L,微波功率为500 W,辐射处理1 min的最佳条件下,色度和CODCr去除率分别高达98%和95.96%,出水主要水质指标均达到纺织染整工业水污染物排放Ⅰ级标准(GB4287-92)。初步的机理探讨表明,该法充分体现了微波辐射、Fenton氧化与混凝过程之间的协同效应,复杂染料分子降解反应历程的提出使得这种协同效应更为直观。  相似文献   

3.
罗超超  彭娜 《广东化工》2011,38(2):119-121
文章以模拟工业洗涤废水为研究对象,探讨了几种因素对混凝处理及Fenton氧化处理效果的影响,得出PFS-PAM混凝藕合Fenton氧化法混凝过程的最佳条件为:pH=5.0,PFS投加量为0.7g,混凝时间为5min;氧化处理过程最佳条件为:[H2O2]/[Fe2+]=2,pH=3.0,氧化时间为5min。与单独混凝处理、单独Fenton氧化处理的处理效果进行比较,PFS—PAM混凝耦合Fenton氧化法处理效果更好,COD总去除率可达98%左右,LAS总去除率也可达到88%,显示了该方法的优越性.  相似文献   

4.
王在钊  徐佰青  任明海  孙云  曾祥永 《当代化工》2021,50(11):2526-2530
通过混凝沉淀-Fenton氧化法处理工业烟草废水.实验结果表明,原废水初始COD为580 mg·L-1,pH=7.混凝沉淀中,当PAC加入量4 mL、PAM加入量1mL、pH=7、环境温度为32℃时,混凝效果最好,COD去除率能达到73%;Fenton氧化处理混凝后废水,当n(H2O2):n(Fe2+)=30:1、H2O2加入量为2 mL、反应pH=3时,Fenton氧化效果最好,COD去除率能达到77%.通过两者联合作用处理后的污水再经生物处理后即可达标排放.  相似文献   

5.
混凝-非均相Fenton氧化法深度处理染色漂洗废水研究   总被引:3,自引:3,他引:0  
采用混凝-非均相Fenton氧化法对某印染厂的染色漂洗废水进行处理,在聚合硫酸铁的混凝作用和黄铁矿作催化剂的非均相Fenton的催化氧化作用下,废水中的污染物得到有效去除。考察了混凝剂投加量、混凝初始pH值、H2O2投加量、氧化初始pH值、黄铁矿投加量及黄铁矿的重复利用等因素对污染物降低效果的影响,研究了黄铁矿催化氧化过程中铁离子形态和浓度变化过程。结果表明,在混凝剂投加量为120 mg/L、混凝初始pH值为7、H2O2投加量为0.12 m L/L、氧化初始pH值为3、黄铁矿投加量为2.5 g/L、氧化反应时间为1 h的条件下,CODCr总去除率达81%,TOC总去除率达67%。黄铁矿重复利用性能良好,具有很好的工程应用性。  相似文献   

6.
Fenton氧化-混凝联合处理橡胶废水研究   总被引:4,自引:0,他引:4  
以橡胶厂的工业废水为研究对象,探讨了各种因素对Fenton氧化后废水混凝处理效果的影响,并对H2O2、FeSO4·7H2O和Fe2(SO4)3用量进行L9(33)正交试验,确定Fenton氧化-混凝联合工艺处理橡胶废水的最佳反应条件为:质量分数30%的H2O2、FeSO4·7H2O和Fe2(SO4)3投加量分别为2 mL、0.3 g和0.3 g.与Fenton氧化法和直接混凝法相比,Fenton氧化-混凝联合工艺对橡胶废水处理效果更好,对COD去除率明显高于单独采用2种方法对COD去除率的总和.  相似文献   

7.
以印染废水的COD和浊度为指标,考察氧化-混凝法(Fenton试剂-PAFC-CPAM)处理印染废水的效果。试验结果表明, Fenton试剂单独处理印染废水时,在pH值为4, FeSO4和H2O2的投加量分别为0.3、 1.32 g/L时,COD的质量浓度和浊度分别降至602.3 mg/L和60 NTU。Fenton试剂与PAFC(0.5 g/L)联合处理时, COD的质量浓度和浊度分别降至484.6 mg/L和38 NTU,继续投加6 mg/L的CPAM后, COD的质量浓度和浊度分别降至419.9 mg/L和25 NTU, COD去除率达到了51.22%。Fenton试剂-PAFC-CPAM联合处理印染废水的效果明显优于单一试剂。  相似文献   

8.
Fenton氧化与混凝耦合法处理有机氯农药废水的研究   总被引:8,自引:0,他引:8  
研究了Fenton氧化与混凝耦合法处理有机氯农药废水的特性.以COD、色度去除率为指标比较了Fenton氧化、混凝、Fenton氧化与混凝耦合法处理有机氯农药废水的去除效果,也比较了处理后废水的可生化性.从技术角度,上述方法均能作为有机氯农药废水的预处理措施.通过经济分析,选取混凝法作为该废水的预处理措施.  相似文献   

9.
废光盘回收废水的处理方法研究   总被引:3,自引:0,他引:3  
倪伟敏  林伟强  徐根良 《水处理技术》2003,29(3):166-168,150
探讨了混凝和氧化法处理废光盘回收产生的废水。通过试验,探讨了PFS、PAC混凝和Fenton、次氯酸钠氧化的反应条件和对COD的去除效果,并选择了较住的混凝剂和氧化剂,优化两者的组合方式,得出了Fenton氧化+PFS混凝联合处理废光盘回收废水的方法。此方法的全程COD去除率可达90.3%。  相似文献   

10.
采用Fenton氧化-混凝法对DSD酸还原段生产废水进行处理,得出最佳Fenton氧化条件:pH值为3、H2O2投加量为1 mL/L(分3次投加)、FeSO4.7H2O投加量为200 mg/L、反应时间为45 min;混凝条件:pH值为10,聚丙烯酰胺投加量为3 mg/L。试验结果表明,该组合工艺处理COD的质量浓度为516 mg/L、色度为500倍的废水,其COD、色度的去除率分别达到81.0%、98.0%。  相似文献   

11.
铁炭微电解-Fenton试剂联合氧化深度处理印染废水的研究   总被引:10,自引:0,他引:10  
采用铁炭微电解-Fenton联合氧化技术对印染废水生化处理的出水进行深度处理,考察了pH值、H2O2投加量、铁炭体积比、反应时间对处理效果的影响。结果表明,最佳反应条件为:pH2~3,H2O2用量3.2 mL/L,铁炭体积比为1∶1,反应时间为90 min,COD的去除率达到90%以上,色度去除率为99%,盐度去除率为64%,各项指标均达到了印染废水的回用要求。  相似文献   

12.
朱静平  刘洪  罗茜 《广州化工》2012,40(15):177-178
以正交设计实验优化Fenton试剂处理印染废水的最佳工艺条件。结果表明,该法很适合作为成分复杂的印染废水的前处理,根据正交设计得出其最佳工艺条件为:pH为5,硫酸亚铁投入量为30 mg/L,双氧水为75 mL/L;试验中影响处理效果的主因素为pH,其次为双氧水,最后为硫酸亚铁投入量。最佳工艺条件下的CODCr及色度的去除率达到61.7%和98.4%,效果令人满意。  相似文献   

13.
实验采用海水对实际印染废水进行处理.考察了pH、海水投加量、温度以及沉淀时间等对脱色率的影响,同时对海水脱色的机理进行了探讨.结果表明,废水的脱色率主要受pH、海水投加量的影响.海水在适宜的条件下对实际印染废水的脱色率可达到99%以上,CODCr去除率可达到57%.  相似文献   

14.
采用自制铁炭微电解材料(MEM)对7种实际难降解典型工业废水进行处理,考察了初始pH值、MEM投加量、曝气时间、絮凝pH值以及MEM的铁炭质量比对7种废水中目标污染物去除率的影响,并优化了处理工艺条件.试验结果表明,不同类型废水的优化处理工艺各不相同,但pH值是影响废水处理的主要因素;处理不同类型废水,MEM的铁炭质量比不同.在优化条件下,铁炭微电解对印染、制药废水的CODCr去除率达到60%以上,对果汁、农药废水的CODCr去除率达到45%以上,对造纸废水的CODCr去除率达到35%以上,对电镀废水总铬去除率、多晶硅废水氟化物去除率达到90%以上;经处理后7种废水的色度均可降至40倍以下.  相似文献   

15.
王圆广 《广东化工》2013,(21):127-128
利用正交试验的方法对模拟印染废水的混凝处理最佳试验条件进行了研究.通过聚合氯化铝铁(PAFC)和硅酸钠(Na2SiO3)对模拟印染废水处理效果的研究,证实表明:在溶液pH值为6,PAFC与Na2SiO3投加量比值为5∶1,温度为55℃,搅拌时间为5min时,对模拟印染废水处理得到较为满意的效果,COD的去除率为88.89%,经处理后水的吸光度为0.3394.  相似文献   

16.
印染废水色度深,毒性大,有机污染物含量高且难降解,采用催化氧化法能将污染物氧化分解。主要介绍了催化氧化法处理印染废水的研究进展,包括光催化氧化法、二氧化氯氧化法、电化学氧化法、Fenton试剂氧化法,对各种方法进行了评价,同时对催化氧化法处理印染废水的发展前景做了简述。  相似文献   

17.
Fenton试剂在处理难降解工业有机废水中的应用   总被引:5,自引:2,他引:3  
Fenton试剂作为一种高级氧化技术在高浓度、难降解和有毒有害工业有机废水的处理研究中被广泛应用,并取得了显著的成果。综述了Fenton试剂在焦化废水、垃圾渗滤液、印染废水和农药废水处理中的应用研究进展。指出:进一步开展Fenton试剂与混凝沉降、活性炭吸附、生化、光催化等方法组合处理技术的研究,减少药剂投加量降低水处理成本;拓宽pH使用范围和寻求铁离子的固定化技术,应是今后Fenton试剂处理难降解工业有机废水的发展方向。  相似文献   

18.
采用一种新型微电解材料处理实际印染废水,探讨了影响处理效果的诸多因素,并通过正交试验确定了最佳处理条件.在曝气量0.75 L/min、反应时间2h、进水pH值为4、材料投加量为0.6kg/L时,印染废水的CODCr和色度去除率分别达到80%和92%以上.本法处理效果明显高于传统铁炭法,CODCr和色度去除率分别高出30...  相似文献   

19.
绍兴市工业园区某污水处理厂二期工程接收的主要是印染废水,以及部分酸性化工废水。由于化工废水的pH低,成分复杂,色度高,可生化性差,对生物处理系统冲击较大,为此,开展了催化铁内电解法处理酸性化工废水,出水与印染废水混合后进行混凝的研究。结果表明,pH是影响催化铁内电解体系对化工废水pH的调节能力、Fe2+产生浓度、COD去除率以及B/C的主要因素。催化铁内电解法处理酸性化工废水2 h后反应出水的铁离子质量浓度在800~2 500 mg/L,将其与印染废水混合后进行混凝,混凝的最适反应条件为pH≥8,Fe2+质量浓度120 mg/L。其处理效果与投加亚铁盐混凝相当,既充分利用了催化铁预处理所产生的高浓度铁离子,并且提高了化工废水的B/C,减小了其所含难降解污染物对生化系统的不利影响,又减少了碱的用量,同时亦实现了化工与印染废水的综合预处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号