首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
以聚醚醚酮(PEEK)为原料,浓硫酸为磺化剂制备了不同磺化度的磺化聚醚醚酮(SPEEK)膜,以及磺化聚醚醚酮与聚乙烯醇(PVA)、正硅酸乙酯(TEOS)、磷钨酸的复合膜.分别对膜的电导率、阻醇性能和吸水率进行了研究.随着SPEEK膜磺化度的增大,膜的电导率有所提高,然而甲醇渗透系数也增大,膜的机械强度明显降低.SPEEK膜的吸水率低于Nafion 115膜,而PVA膜的吸水率则过高.  相似文献   

2.
以浓硫酸为磺化剂,室温下制备了磺化聚醚醚酮(SPEEK)。以N,N-二环己基碳酰亚胺(DCC)为催化剂,将对氨基苯磺酸接枝到多壁碳纳米管(MWCNTs)的表面。采用溶液共混法制备了SPEEK/g-MWCNTs复合膜。采用傅里叶变换红外光谱仪(FT-IR)分析了复合膜的化学结构,采用光学显微镜以及扫描电子显微镜(FESEM)观察了膜的表面和断面结构,并采用交流阻抗法考察了膜的质子传导性能。结果表明:碳纳米管在复合膜中分散均匀,树脂基体包覆在碳管表面,复合膜的质子传导性和拉伸强度均优于磺化聚醚醚酮纯膜。  相似文献   

3.
采用液相氧化法制备了氧化石墨(GO),以浓硫酸为磺化剂与聚醚醚酮反应制备了磺化聚醚醚酮(SPEEK)。采用溶液共混法制备了不同组成的SPEEK/GO复合膜,并运用FTIR、XRD、DSC、TG对复合膜进行了表征。研究表明,当氧化石墨和磺化聚醚醚酮复合后,氧化石墨的层间距由0.8nm增大至1.1nm,这说明磺化聚醚醚酮极性基团或者高分子链段已经插入到氧化石墨片层之间。DSC结果显示,氧化石墨的加入,在一定程度上降低了SPEEK的结晶性能。TG分析表明,在温度低于300℃,复合膜的热稳定性比磺化聚醚醚酮的略有降低,但当温度高于450℃后,复合膜的热稳定性反而得到提高。  相似文献   

4.
孙媛媛  屈树国  李建隆 《化工进展》2016,35(9):2850-2860
Nafion膜具有优良的化学稳定性和导电性能,但是它成本高,高温下几乎不导电。本文回顾了Nafion替代膜之一——磺化聚醚醚酮(SPEEK)膜及SPEEK/离子液体(IL)复合膜的研究进展。介绍了SPEEK制备的两种方法:直接磺化法和磺化单体聚合法,其中直接磺化法工艺简单,但磺化度(DS)≤1.0,反应较难控制;磺化单体聚合法DS可控,但工艺复杂,原料有毒。简述了温度、反应时间、原料配比、磺化单体种类、制膜工艺及溶剂对SPEEK膜性能的影响:直接磺化法中DS与温度成负相关,与反应时间成正相关,与原料配比关系不大;磺化单体聚合法中DS受磺化单体的种类和氟酮与磺化氟酮的比例影响较大。着重介绍了SPEEK/咪唑离子液体复合膜和SPEEK/季铵盐离子液体复合膜的研究现状及应用于质子交换膜燃料电池(PEMFC)时存在的问题。最后对SPEEK/IL复合膜未来的研究方向进行了展望,即解决燃料电池运行过程中复合膜中离子液体流失及与Pt基催化剂相容性等关键问题,以提高PEMFC的性能。  相似文献   

5.
以浓硫酸作为溶剂和磺化试剂,制备了磺化度(DS)为72%的磺化聚醚醚酮(SPEEK)。将SPEEK作为质子导相、还原氧化石墨烯(r GO)作为电子导相,采用流延/溶剂挥发法制备SPEEK-r GO双向复合膜,考察了SPEEK与r GO的质量比对复合膜透氢性能的影响。结果表明:掺杂3 wt%r GO的双相复合膜的透氢性能最好; 300℃,其透氢速率为0. 089 m L·min-1·cm-2,且240℃可以稳定运行100h。  相似文献   

6.
直接甲醇燃料电池用SPES/SiO_2复合膜的研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法成功制备出新型磺化聚醚砜(SPES)/二氧化硅(SiO_2)复合质子交换膜,并对复合膜的结构和性能进行了表征。结果表明,SiO_2在复合膜中分布十分均匀,并且由于SPES与SiO_2之间的氢键相互作用使复合膜的热稳定性明显提高。SiO_2的引入虽使得复合膜的质子传导率有所下降,但其阻醇性能得到了明显改善。  相似文献   

7.
《应用化工》2022,(11):2752-2755
针对催化酯化反应中,传统的强酸、强碱催化剂会导致设备腐蚀严重,产生大量的废酸和废碱,造成环境污染等问题,采用溶液相转化法以聚酯非织造布(NWF)为支撑材料,磷钨酸(HPW)/磺化聚醚砜(SPES)为铸膜液,制备HPW/SPES/NWF复合催化膜。并对复合催化膜结构采用场发射扫描电镜(FESEM)、压汞仪和透射电镜(TEM)进行表征。研究了复合膜结构与性能之间的关系,考察了HPW加入量、进料流速、醇油质量比对酯化性能的影响以及复合膜重复使用性。结果表明,FESEM观察复合膜为均一的海绵状结构。压汞仪得到复合膜的平均孔径在60μm左右,孔隙率为65%。TEM得到HPW均匀地分散在SPES中。在最佳实验条件下,HPW/SPES/NWF复合催化膜转化率达到96.32%,重复使用5次转化率仍保持在96.03%。  相似文献   

8.
屈树国  孙媛媛  李建隆 《化工进展》2016,35(Z2):238-243
采用中和法制备了两种叔铵盐类离子液体[(CH3CH23NH+][HSO4-](简称TEAS)及[(CH3CH23NH+][H2PO4-](简称TEAP),傅里叶红外光谱图表明制备的离子液体为TEAS及TEAP。并将制备的叔铵盐类离子液体掺杂到不同磺化度的磺化聚醚醚酮(简称SPEEK)中,通过溶液浇铸法制备了SPEEK/IL复合膜,对复合膜进行了差示扫描量热(DSC)表征,测试了复合膜中离子液体的流失率及其与Pt/C催化剂的循环伏安(CV)及氧还原(ORR)曲线。SPEEK掺杂叔铵盐类离子液体后,由于叔铵盐离子液体以化学力与SPEEK网状结构中的磺酸基结合,导致复合膜的热稳定性下降,但同时也降低了复合膜中的离子液体流失率。CV及ORR曲线表明,Pt/C催化剂与叔铵盐离子液体电化学窗口相差较小,氧还原活性降低少,两者相容性较好。此类复合膜在质子交换膜燃料电池中具有应用前景。  相似文献   

9.
聚醚醚酮进行磺化,得到了磺化聚醚醚酮(SPEEK),再先后与氯化亚砜和对甲苯磺酰胺反应,制备侧链含磺酰亚胺基的聚醚醚酮(B-SPEEK)。将SPEEK和B-SPEEK以不同的比例共混制备质子交换膜,研究了共混膜的结构、质子交换容量、吸水率、电导率、力学性能和热性能等。结果表明:SPEEK与B-SPEEK按质量比为1.0∶1.0制备的共混膜具有较好的力学性能(拉伸强度25.3 MPa,断裂伸长率45.1%)和最高的电导率(在80℃的条件下,电导率为0.227 S/cm),是一类非常有潜力的质子交换膜。  相似文献   

10.
聚醚醚酮(PEEK)是一种性能优异的工程塑料。笔者简单地介绍了聚醚醚酮的特性,对近年来磺化聚醚醚酮的制备、SPEEK的性能及应用做了比较全面的归纳,并对磺化聚醚醚酮未来的发展前景进行了展望。  相似文献   

11.
DMFCs用SPEEK/SiOx-S复合质子交换膜   总被引:1,自引:0,他引:1       下载免费PDF全文
A sulfonated poly(ether ether ketone) (SPEEK) membrane with a fairly high degree of sulfonation (DS) can swell excessively and even dissolve at high temperature. To solve these problems, insolvable functionalized silica powder with sulfonic acid groups (SiOx-S) was added into the SPEEK matrix (DS 55.1%) to prepare SPEEK/ SiOx-S composite membranes. The decrease in both the swelling degree and the methanol permeability of the membranes was a dose-dependent result of addition of the SiOx-S powder. Pure SPEEK membrane swelled 52.6% at 80°C, whereas the SPEEK/SiOx-S (15%, by mass) membrane swelled only 27.3% at the same temperature. From room temperature to 80℃, all SPEEK/SPEEK/SiOx-S composite membranes had methanol permeability of about one order of magnitude lower than that of Nafion115. Compared with pure SPEEK membranes, the addition of the SiOx-S powder not only leads to higher proton conductivity, but also increases the dimensional stability at higher temperatures, and greater proton conductivity can be achieved at higher temperature. The SPEEK/SiOx-S (20%, by mass) membrane could withstand temperature up to 145°C, at which in 100% relative humidity (RH) its proton conductivity exceeded slightly that of Nafion115 membrane and reached 0.17 S•cm-1, while pure SPEEK mem-brane dissolved at 90°C. The SPEEK/SiOx-S composite membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.  相似文献   

12.
The sulfonated poly(ether ether ketone ketone)/phosphotungstic acid (SPEEKK/PWA) composite membranes were researched for proton exchange membranes. The effect of casting condition on the properties of membranes was studied in detail. The study showed that the casting condition has great influence on the membrane properties because of the hydrogen bond between the SPEEK and PWA and the interaction between the SPEEKK and dimethylformamide (DMF). The PWA particles are well crystallized on the surface when the velocity of the solvent volatilization is very slow under the SEM. The study will favor further research on excellent composite membranes for proton exchange membrane fuel cells. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 4020–4026, 2007  相似文献   

13.
In this research, the preparation of low cost proton exchange membranes (PEMs) based on sulfonated poly ether ether ketone (SPEEK) for application in the microbial fuel cells (MFCs) is studied. Sulfonated polystyrene (SPS) and phosphotungstic acid (PWA) were employed to improve the performance of PEM through the creation of more proton pathways. At first, the sulfonation of PEEK and polystyrene were performed through two modified methods to obtain uniform and high degree of sulfonation (DS) of the polymers and then, the PEMs were prepared through the solution casting method. Accordingly, the formation of uniform skin layer was confirmed by the SEM micrographs. Blending the aforementioned additives to the SPEEK polymer solution significantly enhanced the proton conductivity, water uptake and durability of the modified membranes. The proton conductivities of SPEEK/SPS and SPEEK/PWA membranes at additive/SPEEK weight ratio of 0.15 were 45.3% and 26.2% higher than that of the commercial Nafion117 membrane, respectively. Moreover, the degradation times for the abovementioned modified membranes were 140 and 350 min which indicated satisfactory oxidation stability. Besides, the aforementioned membranes exhibited two times more water uptake compared to the neat SPEEK membrane. Finally, SPEEK/SPS and SPEEK/PWA membranes produced 68% and 36% higher maximum power in the MFC, compared to the commercial Nafion117 membrane. Therefore, the fabricated PEMs are potentially suitable alternatives to be used in the fuel cell applications.  相似文献   

14.
Sulfonated poly(ether ether ketone) (SPEEK) is currently considered to be one of the most potential candidates of commercial perfluorinated sulfonic acid proton exchange membranes. To balance the proton conductivity and mechanical properties of SPEEK, nano TiO2 coated carbon nanotubes (TiO2@CNTs) were prepared using a benzyl alcohol-assisted sol-gel method and then used as a new nanofiller to modify SPEEK to prepare SPEEK/TiO2@CNTs composite membranes. The thick insulated TiO2 coating layer can effectively avoid the risk of electronic short-circuiting formed by CNTs, while the hydrophilicity of TiO2 can also reduce the polar difference between CNTs and SPEEK matrix, thus promoting the homogeneous dispersion of CNTs in the composites. As a result, the composite membranes demonstrated simultaneously improved strength and proton conductivity. Incorporating 5 wt% of TiO2@CNTs exhibited 31% growth in mechanical strength when compared with pure SPEEK. Moreover, the maximum conductivity was 0.104 S cm−1 (80°C) for the composite membrane with 5 wt% of TiO2@CNTs, which was nearly twice as high as that of SPEEK membrane (0.052 S cm−1).  相似文献   

15.
A sulfonated poly(ether ether ketone) (SPEEK) membrane with fairly high degree of sulfonation (DS) swells excessively and even dissolves at high temperature. To solve these problems, sulfonated phenolphthalein poly(ether sulfone) (SPES-C, DS 53.7%) is blended with the SPEEK matrix (DS 55.1%, 61.7%) to prepare SPEEK/SPES-C blend membrane. The decrease in swelling degree and methanol permeability of the membrane is dose-dependent. Pure SPEEK (DS 61.7%) membrane dissolves completely in water at 70ºC, whereas the swelling degree of the SPEEK (DS 61.7%)/SPES-C (40%, by mass) membrane is 29.7% at 80ºC. From room temperature to 80ºC, the methanol permeability of all SPEEK (DS 55.1%)/SPES-C blend membranes is about one order of magnitude lower than that of Nafion®115. At higher temperature, the addition of SPES-C polymer increases the dimensional stability and greater proton conductivity can be achieved. The SPEEK (DS 55.1%)/SPES-C (40%, by mass) membrane can withstand temperatures up to 150ºC. The proton conductivity of SPEEK (DS 55.1%)/SPES-C (30%, by mass) membrane approaches 0.16 S•cm-1, matching that of Nafion115 at 140ºC and 100% RH, while pure SPEEK (DS 55.1%) membrane dissolves at 90ºC. The SPEEK/SPES-C blend membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.  相似文献   

16.
采用流延法制备了聚醚砜(PES)含量不同的PES/磺化聚醚醚酮(SPEEK)共混膜。PES与SPEEK具有良好的相容性。所制备PES/SPEEK共混膜的含水率、溶胀度和甲醇透过系数均随PES含量的增加而降低。虽然共混膜的质子传导性能有所降低.但阻醇性能和溶胀性能提高,这说明PES/SPEEK共混膜是一种很好的直接甲醇燃料电池用固体高分子电解质膜材料。  相似文献   

17.
A study to evaluate the tensile mechanical properties of sulfonated poly(ether ether ketone) (SPEEK) and BPO4/SPEEK composite membranes has been carried out. It is aimed to give an assessment of these materials for applications in proton exchange membrane fuel cells. The stress–strain response of the membranes was measured as a function of the degree of sulfonation (DS) and the filler–matrix ratio. In addition, the effects of immersion in water at various temperatures were explored in situ by means of a homemade testing chamber fitted to the tensile analyzer. The results indicate that the DS has an important influence on the final mechanical behavior of the membranes. The introduction of the BPO4 solid filler leads to deterioration in mechanical performance compared to unfilled SPEEK. A general picture of the microstructural features influencing the mechanical properties of SPEEK and BPO4/SPEEK membranes is proposed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2380–2393, 2005  相似文献   

18.
Sulfonated poly(ether ether ketone) (SPEEK) is a very promising alternative membrane material for direct methanol fuel cells. However, with a fairly high degree of sulfonation (DS), SPEEK membranes can swell excessively and even dissolve at high temperature. This restricts membranes from working above a high tolerable temperature to get high proton conductivity. To deal with this contradictory situation, insolvable zirconium tricarboxybutylphosphonate (Zr(PBTC)) powder was employed to make a composite with SPEEK polymer in an attempt to improve temperature tolerance of the membranes. SPEEK/Zr(PBTC) composite membranes were obtained by casting a homogeneous mixture of Zr(PBTC) and SPEEK in N,N-dimethylacetamide on a glass plate and then evaporating the solvent at 60°C. Many characteristics were investigated, including thermal stability, liquid uptake, methanol permeability and proton conductivity. Results showed significant improvement not only in temperature tolerance, but also in methanol resistance of the SPEEK/Zr(PBTC) composite membranes. The membranes containing 30 wt-% ∼ 40 wt-% of Zr(PBTC) had their methanol permeability around 10−7 cm2·s−1 at room temperature to 80°C, which was one order of magnitude lower than that of Nafion?115. High proton conductivity of the composite membranes, however, could also be achieved from higher temperature applied. At 100% relative humidity, above 90°C the conductivity of the composite membrane containing 40 wt-% of Zr(PBTC) exceeded that of the Nafion?115 membrane and even reached a high value of 0.36 S·cm−1 at 160°C. Improved applicable temperature and high conductivity of the compositemembrane indicated its promising application inDMFC operations at high temperature. __________ Translated from Acta Polymerica Sinica, 2007, (4): 337–342 [译自:高分子学报]  相似文献   

19.
Asymmetric ultrafiltration (UF) membranes were prepared by the blending of poly(ether sulfone) (PES) and sulfonated poly(ether ether ketone) (SPEEK) polymers with N,N′‐dimethylformamide solvent by the phase‐inversion method. SPEEK was selected as the hydrophilic polymer in a blend with different composition of PES and SPEEK. The solution‐cast PES/SPEEK blend membranes were homogeneous for all of the studied compositions from 100/0 to 60/40 wt % in a total of 17.5 wt % polymer and 82.5 wt % solvent. The presence of SPEEK beyond 40 wt % in the casting solution did not form membranes. The prepared membranes were characterized for their UF performances, such as pure water flux, water content, porosity, and membrane hydraulic resistance, and morphology and melting temperature. We estimated that the pure water flux of the PES/SPEEK blend membranes increased from 17.3 to 85.6 L m?2 h?1 when the concentration of SPEEK increased from 0 to 40 wt % in the casting solution. The membranes were also characterized their separation performance with proteins and metal‐ion solutions. The results indicate significant improvement in the performance characteristics of the blend membranes with the addition of SPEEK. In particular, the rejection of proteins and metal ions was marginally decreased, whereas the permeate flux was radically improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号