首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
针对常见的降维方法难以有效保留多元时间序列主要特征的问题,分析了传统主成分分析(PCA)方法在多元时间序列降维中的局限性,提出一种基于共同主成分分析的多元时间序列降维方法,并通过仿真实验比较了两种方法的降维有效性和计算复杂度.实验结果表明,所提出的降维方法能够以相对较小的计算代价,更有效地对多元时间序列进行降维.  相似文献   

2.
李海林  梁叶 《控制与决策》2020,35(3):629-636
针对传统主成分分析及相关方法对多元时间序列特征表示的局限性,以及降维效果对数据相似性度量质量的影响,从数据形态特征的角度出发,提出一种关键形态特征的多元时间序列降维方法.利用动态时间弯曲方法找出训练集每个类别的中心多元时间序列,根据形态特征找出每个中心多元时间序列的关键特征变量分量的重要度,使用重要度提取若干个关键特征变量分量,达到数据降维的目的.实验结果表明,与传统方法相比,所提方法能够有效地根据形态特征对多元时间序列进行降维,并且能够取得更好的分类效果.  相似文献   

3.
多元时间序列特征降维方法研究   总被引:2,自引:0,他引:2  
针对常见的降维方法难以有效地保留多元时间序列主要特征的问题,分析了传统PCA方法在多元时间序列降维中的局限性;提出一种基于共同主成分分析的线性降维方法;把共同主成分与核技巧相结合,通过数学推导,将其拓展为基于共同核主成分分析的非线性降维方法;最后分析两种方法的降维有效性.与传统PCA方法相比,基于共同核主成分分析的降维方法可以表达变量间的非线性关系、能够选取合适的核函数和形状参数,因此降维手段更为灵活、对数据的适应性更强.实验结果表明,本文提出的降维方法能够更有效地对多元时间序列进行降维.  相似文献   

4.
本文研究了基于Isomap的非线性降维方法,对由面部表情序列提取的面部动画参数特征进行降维,分析了降维后的流形特征空间与认知心理学情感空间之间的关系。实验结果表明,Isomap降维后的情感流形特征能够表现情感的强度变化,而且比PCA降维特征对情感强度的描述更加合理和平滑;情感识别实验也表明,使用Isomap降维流形特征的识别率要高于原始情感特征和PCA降维特征,而且对各种情感的识别结果更加均衡。  相似文献   

5.
李海林  杨丽彬 《控制与决策》2013,28(11):1718-1722

数据降维和特征表示是解决时间序列维灾问题的关键技术和重要方法, 它们在时间序列数据挖掘中起基础性作用. 鉴于此, 提出一种新的时间序列数据降维和特征表示方法, 利用正交多项式回归模型对时间序列实现特征提取, 结合特征序列长度对时间序列的拟合分析结果, 运用奇异值分解方法对特征序列进一步降维处理, 进而得到保存大部分信息且维数更低的特征序列. 数值实验结果表明, 新方法可以在维度较低的特征空间下取得较好的数据挖掘聚类和分类效果.

  相似文献   

6.
Shapelet序列分析为时间序列分类提供了一种快速分类的方法,但Shapelet序列抽取速度很慢,限制了它的应用范围。为了加快 Shapelet 序列的提取,提出了一种基于主成分分析的改进方法。首先运用主成分分析法(PCA)对时间序列数据集进行降维,采用降维后的数据表示原数据,然后对降维后的数据提取出最能代表类特征的Shapelet序列。实验结果表明:本方法在保证分类准确率的前提下,提高了运算速度。  相似文献   

7.
针对语音信号特征参数LPCC和MFCC相结合后数据维数过高,导致识别器性能下降的问题,提出采用遗传算法对初始特征参数进行降维,来提高识别性能.首先提取语音信号的LPCC和MFCC,然后采用遗传算法对其进行特征降维,最后将得到的低维数据送入支持向量机进行识别.仿真实验结果表明,采用遗传算法进行特征降维与传统的PCA降维相比,识别率提高了12.2%,和初始特征相比识别率降低了1.23%,但是识别时间提高了4.5倍.  相似文献   

8.
提出了一种新的DNA序列的3D图形表示方法,该方法能体现较多的DNA序列的特征,而且避免了信息的丢失。为了进行DNA序列之间的相似性分析,在此方法的基础上对图形进行特征提取并利用高维数据降维算法对提取后的高维数据进行降维,并降到3维,降维后的数据不但保持了原有高维数据的特征而且能很方便地观察它们之间的关系。通过对10个物种的β-球蛋白基因的第一个外显子的相似性分析,得到了较好的结果。  相似文献   

9.
利用PCA进行深度学习图像特征提取后的降维研究   总被引:1,自引:0,他引:1  
深度学习是当前人工智能领域广泛使用的一种机器学习方法.深度学习对数据的高度依赖性使得数据需要处理的维度剧增,极大地影响了计算效率和数据分类性能.本文以数据降维为研究目标,对深度学习中的各种数据降维方法进行分析.在此基础上,以Caltech 101图像数据集为实验对象,采用VGG-16深度卷积神经网络进行图像的特征提取,以PCA主成分分析方法为例来实现高维图像特征数据的降维处理.在实验阶段,采用欧氏距离作为相似性度量来检验经过降维处理后的精度指标.实验证明:当提取VGG-16神经网络fc3层的4096维特征后,使用PCA法将数据维度降至64维,依然能够保持较高的特征信息.  相似文献   

10.
由于时间序列数据具有高维性等特征,不易直接进行挖掘.在对时间序列数据进行挖掘之前通常先进行特征表示达到降维的目的,分段聚合近似表示(PAA)是特征表示方法中比较常用的一种,针对PAA算法对每一区间有平均对待的缺点,提出一种采用小波熵的时间序列分段聚合近似表示,将小波熵运用到PAA算法的改进中,把某一区间内的小波能量熵值作为判评区间复杂度的指标,按各区间内小波熵值的比重分配各区间内分段数,实现对复杂区间详细描述,对相对平稳区间粗略逼近,利用matlab平台仿真证明,上述方法在压缩比相同的情况下比PAA方法更好地拟合原始序列,不仅能对时间序列有效地降维,而且能使近似更加精确,进而实现时间序列数据挖掘效率的提高.  相似文献   

11.
本文提出了一种基于切丛的维数约简方法。流形上的切丛不但能够刻画流形局部的结构特征,而且对流形整体的结构也能够进行描述。尤其对于聚类比较明显的数据集,在降维后能够更为精确地求得原数据在低维空间中的投影。通过对手写体数据的降维实验和BreastCancer实验表明,基于切丛的维数约简方法是一种有效的降维算法。  相似文献   

12.
支持向量描述鉴别分析及在人脸识别中的应用*   总被引:2,自引:2,他引:2  
  相似文献   

13.
基于线性投影结构的非负矩阵分解   总被引:4,自引:0,他引:4  
非负矩阵分解(Non-negative matrix factorization, NMF)是一个近年来非常流行的非负数据处理方法, 它常用于维数约减、特征提取和数据挖掘等. NMF定义中采用的数学模型基于非线性投影结构构造, 这决定了NMF降维需借助计算量很大的迭代操作来实现. 此外, 由此模型提取的NMF特征常不稀疏, 这与NMF的设计期望相差甚远. 为一并解决上述两个问题, 本文提出了一个新的模型---基于线性投影结构的NMF (Linear projection-based NMF, LPBNMF), 并构造了一个单调的LPBNMF算法. 从数学的角度看, LPBNMF可理解为实现NMF的一种特殊方式. LPBNMF降维通过线性变换来完成, 它所采用的数学模型的自身结构特点决定了由其得到的特征一定非常稀疏. 大量的比较实验表明, PBNMF的降维效率显著高于NMF, LPBNMF特征明显比NMF特征更稀疏和局部化. 最后, 基于AR人脸数据库的实验揭示, LPBNMF特征比NMF、LDA以及PCA等特征更适合于用最近邻分类法处理有遮挡人脸识别问题.  相似文献   

14.
基于改进的保局投影视频特征提取   总被引:1,自引:0,他引:1  
提出一种视频镜头特征提取方法。针对保局投影变换要预先指定降维后的维数和近邻参数K,根据降维前后的结构误差提出确定最佳降维维数的方法,结合各个数据点邻域的统计特征实现近邻参数K的动态选择。在此基础上,将多个视频镜头的高维特征投影到低维空间获得最佳投影矩阵,新的视频特征根据此投影矩阵进行降维处理。对比实验结果表明,通过保局投影变换提取出来的特征比其它特征更加有利于视频的镜头分割。  相似文献   

15.
提出基于量子粒子群的投影寻踪聚类算法,该算法将量子粒子群的全局搜索能力与投影寻踪对高维数据的降维能力相结合,有效解决了高维数据聚类计算量大效率低的问题。并将该算法应用于三种不同的测试数据,仿真实验结果表明该算法具有更好的效率,且提高了聚类效果,是解决高维聚类问题的一种有效方法。  相似文献   

16.
针对现有多变量时间序列分类算法存在的要求序列等长和忽视类别信息两个不足,提出基于奇异值分解(SVD)和判别局部保持投影的分类算法。该算法基于降维思想,先通过SVD将样本的第一右奇异向量作为特征向量,以此将不等长序列转化为规模大小相同的序列;接着采用基于最大间距准则的判别局部保持投影对特征向量投影,充分利用类别信息以确保投影后同类样本尽量接近,异类样本尽量分散;最后在低维子空间采用1最近邻(1NN)、Parzen窗、支持向量机(SVM)和朴素Bayes分类器进行分类。在Australian Sign Language(ASL)、Japanese Vowels(JV)和Wafer三个公开的多变量时间序列数据集上进行的实验结果表明:在时间开销基本不变的前提下,所提方法取得了较低的分类错误率。  相似文献   

17.
现实世界中高维数据无处不在,然而在高维数据中往往存在大量的冗余和噪声信息,这导致很多传统聚类算法在对高维数据聚类时不能获得很好的性能.实践中发现高维数据的类簇结构往往嵌入在较低维的子空间中.因而,降维成为挖掘高维数据类簇结构的关键技术.在众多降维方法中,基于图的降维方法是研究的热点.然而,大部分基于图的降维算法存在以下两个问题:(1)需要计算或者学习邻接图,计算复杂度高;(2)降维的过程中没有考虑降维后的用途.针对这两个问题,提出一种基于极大熵的快速无监督降维算法MEDR. MEDR算法融合线性投影和极大熵聚类模型,通过一种有效的迭代优化算法寻找高维数据嵌入在低维子空间的潜在最优类簇结构. MEDR算法不需事先输入邻接图,具有样本个数的线性时间复杂度.在真实数据集上的实验结果表明,与传统的降维方法相比, MEDR算法能够找到更好地将高维数据投影到低维子空间的投影矩阵,使投影后的数据有利于聚类.  相似文献   

18.
兰丽辉  鞠时光 《计算机科学》2016,43(3):151-157, 178
针对加权社会网络的发布,提出了一种基于随机投影的隐私保护方法——向量集随机投影,该方法通过对加权社会网络的结构和边权重进行干扰实现敏感信息的隐私保护。通过对加权社会网络进行分割,得到节点数相同的若干个子网络;依据边空间理论,采用由边信息构建的向量描述子网络,构建加权社会网络的向量集作为发布模型;利用随机投影技术对原始向量集进行降维操作得到目标向量集;依据目标向量集构建加权社会网络的发布集。实验结果表明,向量集随机投影方法能够在确保隐私信息安全的同时仍然保护社会网络分析所需要的某些结构特征。  相似文献   

19.
陶洋  鲍灵浪  胡昊 《计算机工程》2021,47(6):83-87,97
在对样本数据进行降维时,子空间学习模型无法揭示数据结构和处理训练样本外的新样本。提出一种融合表示学习和嵌入子空间学习的降维方法。将低秩表示、加权稀疏表示和低维子空间学习构建到一个统一的框架中,并采用交替优化策略,实现数据表示系数矩阵和数据投影矩阵的同时学习和相互优化,最终达到重建效果最优的降维精度。在3个数据库上的实验结果表明,与PCA、NPE、LRPP等主流方法相比,该方法不仅可以解决无法训练新样本的问题,而且具有较优的分类性能。  相似文献   

20.
FastMap is a dimension reduction technique that operates on distances between objects. Although only distances are used, implicitly the technique assumes that the objects are points in a p-dimensional Euclidean space. It selects a sequence of k /spl les/ p orthogonal axes defined by distant pairs of points (called pivots) and computes the projection of the points onto the orthogonal axes. We show that FastMap uses only the outer envelope of a data set. Pivots are taken from the faces, usually vertices, of the convex hull of the data points in the original implicit Euclidean space. This provides a bridge to results in robust statistics, where the convex hull is used as a tool in multivariate outlier detection and in robust estimation methods. The connection sheds new light on the properties of FastMap, particularly its sensitivity to outliers, and provides an opportunity for a new class of dimension reduction algorithms, RobustMaps, that retain the speed of FastMap and exploit ideas in robust statistics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号