首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
接枝PP/PET共混物的结构与性能   总被引:7,自引:0,他引:7  
采用PP接枝马来酰亚胺(PP-g-MI)与PET熔融共混,用DSC,PLM,SEM等方法对共混物进行表征,结果表明,随着PP-g-MI接枝率的增加,共混物中PET的冷结晶温度降低,PP-g-MI与PET的相容性较PP与PET的相容性有了大幅度提高,同时PP-g-MI改善了PET的结晶性能,接枝PP在PET连续相中分散均匀,粒子尺寸小,分散相互连续相之间有较好的粘接作用。  相似文献   

2.
PA66/PP/POE—MAH合金的形态结构与力学性能   总被引:9,自引:1,他引:8  
通过直接共混法制备了PA66/PP/POE-MAH合金,性能测试表明PA66/PP/POE-MAH合金的常温及低温缺口冲击强度较原PA66有较大提高,而吸水率则明显下降,拉伸强度变化不大。DSC测试显示,POE-MAH可降低PA66及PP的熔点及热焓,表明POE-MAH影响着PA66和PP的两相界面作用和结晶行为,SEM照片显示分散相粒径大小及两相界面结构与POE-MAH含量相关。  相似文献   

3.
新型聚丙烯熔融接枝物增容PP/PA6共混物   总被引:13,自引:0,他引:13  
本文研究了聚丙烯熔融接枝马来酸酐和不饱和羧酸混合单体对PP/PA6共混物的增容作用。研究结果表明,该接枝物是PP/PA6共混物的有效增容剂,能显著提高共混物的力学性能;接枝物的接枝率和用量影响增容共混物的力学性能;用接枝物增容后,PP/PA6表现更强的假塑性行为。溶融粘度增加,粘流活化能增加;随着接枝物用量的增加,共混物的MFI下降。  相似文献   

4.
POE-MAH对PA66/PP共混物形态结构和相容性的影响   总被引:4,自引:0,他引:4  
通过扫描电镜(SEM)观察、差示扫描量热法(DSC)和广角X射线衍射分析(WAXD),研究了POE-MAH对PA66/PP共混物的形态结构和相容性的影响。实验结果表明,POE-MAH的加入可使PA66/PP共混物由不相容的两结构向相容的均质网状结构转变,共混物的相容性和分散度得以提高,并在POE-MAH含量为9%时,其增容效果最好。随POE-MAH含量增加,PA66/66共混物的结晶度随之降低,同时共混物中PP的结晶行为及PA66和PP的微晶尺寸亦与POE-MAH含量相关。  相似文献   

5.
采用熔融共混法制备了聚丙烯(PP)和两种牌号的高性能热塑性弹性体HYBRAR的共混物。通过观察共混物的结晶形态,研究共混物结晶性能以及测试共混物的透光率,结果表明:加入HYBRAR后,PP的主要晶型(α晶)不变,结晶温度升高,同时结晶尺寸变小,结晶度显著提高;PP/HYBRAR7125共混体系的结晶速率呈现不规律变化,而PP/HYBRAR7311体系则先降低再升高;加入HYBRAR后,PP的透光率明显提高。  相似文献   

6.
聚丙烯接枝衣康酸增容PA6/PP共混物性能及形态研究   总被引:4,自引:0,他引:4  
采用反应型双螺杆挤出机和熔融接枝技术制备了一系列聚丙烯(PP)接枝物,包括单一单体接枝物PP接枝衣康酸(PP-g-ITA)和双单体接枝物PP接枝ITA和苯乙烯[PP-g-(ITA-co-St)],通过红外光谱和热分析研究了PP接枝物的结构,并研究了PP接枝物的接枝率和熔体流动速率与单体和引发剂用量的关系。通过反应挤出制备了PP接枝物增容PA6/PP共混物,研究了增容共混物的力学性能和形态结构。结果显示:加入接枝物后,共混体系的冲击强度明显提高;SEM观察表明,接枝物的加入能明显改善增容共混物的两相界面结合状况,降低共混物的分散相尺寸,改善体系的分散状况,共混物的两相界面变得模糊,相容性得到明显提高;DSC测试表明,加入接枝物后,共混物中PA6组分的结晶度下降,PP组合的结晶度上升。表明PP-g-ITA是PA6/PP共混体系有效的增容剂兼增韧剂。  相似文献   

7.
在传统转矩流变仪上叠加机械振动帛成了振动共混流变仪,叠加机械振动的流动影响共混物的相形态,因此影响了PC/PP的多重结晶行为。DSC和偏光显微联用分析发现,所有峰对应的结晶都是异相成核,共混频率或振幅增高,减小分散相相畴尺寸,PP粒子的异相核会向PC迁移,所以制备的共混物的低温结晶峰越强,而高温结晶峰减弱,共混振幅很大时,中等尺寸粒子界面附生非均相成核等效增加了较高温度成核率,结晶温度较高。  相似文献   

8.
聚丙烯(PP)和乙烯-丙烯-二烯共聚物(EPDM)的共混物具有较高的商业价值,因为PP是一种价格低廉、易加工的热塑性材料。但因其常温下具结晶性而使得冲击强度很差。合成橡胶EPDM分散在PP基质中能提高PP的冲击强度,但同时降低了加工性能。提高PP/EPDM共混物冲击强度的条件包括:EPDM在PP基质中精细均一的分散;提高PP和EPDM相同的界面粘结;  相似文献   

9.
马来酸酐接枝物对PE/PA6共混物相容性的影响   总被引:2,自引:0,他引:2  
采用熔融共混法制备了PP/PA6/POE-g-MAH和PP/PA6/PP-g-MAH共混物。通过扫描电子显微镜(SEM)、差示扫描量热(DSC)仪分析和力学性能测试研究了增容剂POE-g-MAH和PP-g-MAH对PP/PA6共混物相容性、形态结构和宏观力学性能的影响。结果表明,在PP/PA6共混体系中分别加入POE-g-MAH和PP-g-MAH不仅能显著改善两相界面的相容性,减小分散相的粒径,而且能使共混物的力学性能显著提高。当增容剂的用量为5份时,PP/PA6共混物有较好的综合力学性能。POE-g-MAH和PP-g-MAH增容PP/PA6共混体系非等温结晶行为的研究表明,POE-g-MAH和PP-g-MAH均能促进PA6对PP基体的异相成核作用。  相似文献   

10.
PP/EOC共混物形态及性能的研究   总被引:8,自引:0,他引:8  
研究了三种不同辛烯含量的乙烯-辛烯共聚物(EOCs)增韧改性PP元共混物的形态与性能在相同加工条件和共混比例下,PP/EOC共混物的形态由粘度比和界面相互作用决定,发现粘度比和界面相互作用大时,分散相易变形呈纤状分布。弹性体EOC的加入使PP的拉伸,弯曲强度和模量均有所下降,而冲击性能得以显著提高。  相似文献   

11.
以马来酸酐(MAH)和苯乙烯(St)多单体熔融接枝聚丙烯[PP-g-(MAH-co-St)]为相容剂,制备了聚酰胺10101/聚丙烯(PA1010/PP)共混体系。用毛细管流变仪、扫描电子显微镜、力学性能测试等方法研究了和加工工艺相容剂对PA1010/PP共混体系的形态和力学性能的影响。结果表明,相容剂PP-g-(MAH-co-St)有效降低了PA1010/PP共混体系的熔体流动速率;该共混体系熔体属于假塑性流体,熔体黏度随PP-g-(MAH-co-St)含量的增加逐渐增大;随着相容剂含量的增加,PA1010/PP共混体系中分散相PP的粒径逐步减小,力学性能得到改善,PA1010/PP/PP-g-(MAH-co-St)为70/25/5和70/20/10的共混体系的拉伸强度分别比PA1010/PP (70/30)共混体系提高了55.0 %和61.9 %,冲击强度分别提高了61.0 %和129.7 %;剪切速率为706.5 s-1时出现熔体破裂现象,剪切速率为5002.65 s-1时出现严重熔体破裂。  相似文献   

12.
PP-g-MAH/PA6共混物流变性能的研究   总被引:3,自引:0,他引:3  
探讨了PPgMAH/PA6共混物的流变性能,并同PP/PA6共混物作了对比。研究结果表明:PPgMAH/PA6共混物熔体的流变行为符合假塑性流体的流动规律,非牛顿性比PP/PA6强,熔体粘度比PP/PA6共混物高。  相似文献   

13.
胡伟  郑重  张明  张秀峰  高歌 《塑料工业》2002,30(5):16-17
以PS-MAH-GMA作为PA1010/ABS共混体系的增容剂,探讨了增容剂对共混物的力学性能的影响,结果发现:PS-MAH-GMA作为一种反应型增容剂,对于PA1010/ABS共混体系有较好的增容效果,可提高共混体系的力学性能。  相似文献   

14.
增容PP/PA6共混物的界面相互作用   总被引:1,自引:0,他引:1  
采用PP熔融接枝MAH和不饱和羧酸混合单体通过反应挤出增容PP/PP6共混物,研究了增容共混物两相间的界面相互作用。通过Molau实验,抽担实验、IR测试等证明:接枝物增容的PP/P6共混物,由于在熔融挤出共混过程中,接枝物的反应基团和PA6的端氨基基发生化学反应地生成了PP-g-PA6,使得共混物两相产生了较强的界面相互作用。  相似文献   

15.
研究了以自制的马来酸酐 (MAH)接枝改性ABS(MABS)作为PA 10 10 /ABS增容剂所形成的PA 10 10 /ABS合金的性能。研究结果表明 ,随ABS中马来酸酐接枝量的上升 ,PA 10 10 /ABS合金的冲击强度提高 ,保持PA 10 10与ABS用量在某一恰当配比范围内 ,可得到冲击强度高 ,维卡软化温度较高的合金。  相似文献   

16.
通过扫描电镜、差示扫描量热仪和力学性能测试等方法研究了聚丙烯接枝马来酸配和酷酸乙烯酷(PP-g-MAH/VAc)对聚丙烯康酸胺6(80/20}共混体系的增容效果。结果表明,PP-g-(MAH/DAc)用于PP/PA6共混体系,分散相PA6的微区尺寸可以减小到5μm以下,相应地提高了共混物的断裂伸长率、拉伸强度和冲击强度。使用接枝率为5.3%的PP-g-(MAH/VAc)作为相容剂,当用量为8%时,体系的拉伸强度为60.88MPa,断裂伸长率为558%,冲击强度为5.28KJ/㎡.DSC分析表明,PP/PA6共混体系各组分相互促进成核,结晶度降低。FTIR结果表明,PP-g-(MAH/VAc)中的MAH上的酸配基团与PA6中的酸胺键发生了化学反应从而改善了体系的相容性。  相似文献   

17.
以BPO为引发剂,通过悬浮固相接枝法,得到PP-g-(MAH/VAc)和PP-g-(MA/AA)接枝物,通过称重法和非水滴定法测得了接枝物的接枝率。红外光谱表明,单体都能接枝到PP上。SEM结果表明PP/PA6/PP接枝物共混体系中,PP-g-(MAH/VAc)的增容效果优于PP-g-(MA/AA),这主要是因为PP-g(MAH/VAc)在PP/PA6体系中起到反应性增容的作用,而PP-g-(MA/AA)仅起到物理缠结的作用。  相似文献   

18.
The modification of polypropylene (PP) was accomplished by melt grafting glycidyl methacrylate (GMA) on its molecular chains. The resulting PP-g-GMA was used to prepare binary blends of polyamide 1010 (PA1010) and PP-g-GMA. Different blend morphologies were observed by scanning electron microscopy (SEM) according to the nature and content of PA1010 used. Comparing the PA1010/PP-g-GMA and PA1010/PP binary blends, the size of the domains of PP-g-GMA were much smaller than that of PP at the same compositions. It was found that mechanical properties of PA1010/PP-g-GMA blends were obviously better than that of PA1010/PP blends, and the mechanical properties were significantly influenced by wetting conditions for uncompatibilized and compatibilized blends. A different dependence of the flexural modulus on water was found for PA1010/PP and PA1010/PP-g-GMA. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/PP-g-GMA blends. Thermal and rheological analyses were performed to confirm the possible chemical reactions taking place during the blending process. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1489–1498, 1997  相似文献   

19.
相容剂对PVC/PA6体系形态结构的影响   总被引:3,自引:2,他引:1  
研究了SMA—g—MAH、SEBS—g—MAH和EVA—g—MAH3种相容剂对PVC/PA6共混物的增容效果。结果表明,未添加相容剂的PVC/PA6(100/20)共混物的相容性不好;添加SEBS—g—MAH和EVA—g—MAH两种相容剂后,PVC/PA6共混物的相容性得到一定程度的改善;添加SMA—g—MAH相容剂后,PA6很均匀地分散在PVC基体中。  相似文献   

20.
阻隔性HDPE/MPE/PA1010共混体系的研究   总被引:3,自引:0,他引:3  
用挤出法以马来酸酐(MAH)接枝高密度聚乙烯(HDPE)为增容剂(MPE),PA1010为阻隔组分,HDPE为基料,制取了HDPE/MPE/PA1010共混材料。研究了挤出温度、MPE用量、PA1010含量对其阻隔性能的影响,比较了几种不同渗透体系的吸油率和渗透损失量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号