首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Food Packaging: A Comprehensive Review and Future Trends   总被引:1,自引:0,他引:1       下载免费PDF全文
Innovations in food packaging systems will help meet the evolving needs of the market, such as consumer preference for “healthy” and high‐quality food products and reduction of the negative environmental impacts of food packaging. Emerging concepts of active and intelligent packaging technologies provide numerous innovative solutions for prolonging shelf‐life and improving the quality and safety of food products. There are also new approaches to improving the passive characteristics of food packaging, such as mechanical strength, barrier performance, and thermal stability. The development of sustainable or green packaging has the potential to reduce the environmental impacts of food packaging through the use of edible or biodegradable materials, plant extracts, and nanomaterials. Active, intelligent, and green packaging technologies can work synergistically to yield a multipurpose food‐packaging system with no negative interactions between components, and this aim can be seen as the ultimate future goal for food packaging technology. This article reviews the principles of food packaging and recent developments in different types of food packaging technologies. Global patents and future research trends are also discussed.  相似文献   

2.
The purpose of this review is to provide an overview of current packaging systems, e.g. active packaging and intelligent packaging, for various foods. Active packaging, such as modified atmosphere packaging (MAP), extends the shelf life of fresh produce, provides a high‐quality product, reduces economic losses, including those caused by delay of ripening, and improves appearance. However, in active packaging, several variables must be considered, such as temperature control and different gas formulations with different product types and microorganisms. Active packaging refers to the incorporation of additive agents into packaging materials with the purpose of maintaining or extending food product quality and shelf life. Intelligent packaging is emerging as a potential advantage in food processing and is an especially useful tool for tracking product information and monitoring product conditions. Moreover, intelligent packaging facilitates data access and information exchange by altering conditions inside or outside the packaging and product. In spite of these advantages, few of these packaging systems are commercialized because of high cost, strict safety and hygiene regulations or limited consumer acceptance. Therefore more research is needed to develop cheaper, more easily applicable and effective packaging systems for various foods. © 2015 Society of Chemical Industry  相似文献   

3.
Active and intelligent packaging systems for a modern society   总被引:3,自引:0,他引:3  
Active and intelligent packaging systems are continuously evolving in response to growing challenges from a modern society. This article reviews: (1) the different categories of active and intelligent packaging concepts and currently available commercial applications, (2) latest packaging research trends and innovations, and (3) the growth perspectives of the active and intelligent packaging market. Active packaging aiming at extending shelf life or improving safety while maintaining quality is progressing towards the incorporation of natural active agents into more sustainable packaging materials. Intelligent packaging systems which monitor the condition of the packed food or its environment are progressing towards more cost-effective, convenient and integrated systems to provide innovative packaging solutions. Market growth is expected for active packaging with leading shares for moisture absorbers, oxygen scavengers, microwave susceptors and antimicrobial packaging. The market for intelligent packaging is also promising with strong gains for time–temperature indicator labels and advancements in the integration of intelligent concepts into packaging materials.  相似文献   

4.
In the recent past, food packaging was used to enable marketing of products and to provide passive protection against environmental contaminations or influences that affect the shelf life of the products. However, unlike traditional packaging, which must be totally inert, active packaging is designed to interact with the contents and/or the surrounding environment. Active packaging systems are successfully used to increase the shelf life of processed foods and can be categorized into adsorbing and releasing systems (for example, oxygen scavengers, ethylene scavengers, liquid and moisture absorbers, flavor and odor absorbers or releasers, antimicrobials, etc.). Intelligent packaging is characterized by its ability to monitor the condition of packaged food or the environment by providing information about different factors during transportation and storage. Intelligent packaging includes time-temperature indicators, gas detectors, and freshness and/or ripening indicators. At the same time, advances in nanotechnology and the improvement of nanomaterials will enable the development of better and new active and intelligent packaging. Such packaging provides great benefits to the food industry to improve freshness, shelf-life of food, and allows monitoring to control the storage conditions from the place of production to consumption by the final consumer.  相似文献   

5.
Intelligent food packaging system exhibits enhanced communication function by providing dynamic product information to various stakeholders (e.g., consumers, retailers, distributors) in the supply chain. One example of intelligent packaging involves the use of colorimetric indicators, which when subjected to external stimuli (e.g., moisture, gas/vapor, electromagnetic radiation, temperature), display discernable color changes that can be correlated with real-time changes in product quality. This type of interactive packaging system allows continuous monitoring of product freshness during transportation, distribution, storage, and marketing phases. This review summarizes the colorimetric indicator technologies for intelligent packaging systems, emphasizing on the types of indicator dyes, preparation methods, applications in different food products, and future considerations. Both food and nonfood indicator materials integrated into various carriers (e.g., paper-based substrates, polymer films, electrospun fibers, and nanoparticles) with material properties optimized for specific applications are discussed, targeting perishable products, such as fresh meat and fishery products. Colorimetric indicators can supplement the traditional “Best Before” date label by providing real-time product quality information to the consumers and retailers, thereby not only ensuring product safety, but also promising in reducing food waste. Successful scale-up of these intelligent packaging technologies to the industrial level must consider issues related to regulatory approval, consumer acceptance, cost-effectiveness, and product compatibility.  相似文献   

6.
Active and intelligent packaging for food: Is it the future?   总被引:2,自引:0,他引:2  
This paper gives an overview of the legal consequences of a new EU framework regulation on food contact materials which includes controls on active and intelligent packaging. Recent developments in active and intelligent packaging systems are described, two examples of which aim at achieving improvements in quality and safety of food products. The first one is an on-command preservative-releasing packaging system. The second system is an intelligent concept, based on the development of a non-invasive microbial growth sensor to monitor the sterility of food products.  相似文献   

7.
The upswing in consumer demand for fresh and high quality preservative‐free foods has led to the development of modified atmosphere packaging (MAP). Increasingly, MAP is being used with high carbon dioxide (CO2) concentration as well as CO2/N2 gas mixes. Modified atmosphere packaging or ‘gas flushing’ as it is also known is an increasingly popular technique used to extend the shelf life (both quality and safety) of a number of dairy products. Carbon dioxide is an active constituent of MAP, naturally present in freshly drawn raw milk. Addition of CO2 to raw milk or flushing the package headspace has proved to be a simple and cost‐effective method, depending upon the initial microbiological quality of the food product. Carbon dioxide addition through MAP or direct injection as an economically affordable shelf life extension strategy is used commercially worldwide for some dairy products. The development of food packaging machines with integrated gas flushing capabilities and the supply of ‘food grade’ gases allow dairy foods manufacturers to enhance the quality of their products. This review presents a broad spectrum of current research and the current trends with respect to CO2 as a natural microbial hurdle with special focus on its precise mechanism and its role in quality improvement of dairy products.  相似文献   

8.
随着食品加工产业的进一步发展,食品质量和安全越来越受到公众重视,为了保护食品品质和延长食品货架期,开发新型包装材料具有重要意义。主要介绍了四种新型包装材料,包括抗菌材料、气调材料、控释材料和智能材料,总结各种包装材料的特点以及在食品包装领域的研究进展,并对未来食品包装材料的发展趋势进行展望。  相似文献   

9.
Electrospun nanofibers with structural and functional advantages have drawn much attention due to their potential applications for active food packaging. The traditional role of food packaging is just storage containers for food products. The changes of retailing practice and consumer demand promote the development of active packaging to improve the safety, quality, and shelf life of the packaged foods. To develop the technique of electrospinning for active food packaging, electrospun nanofibers have been covalently or non‐covalently functionalized for loading diverse bioactive compounds including antimicrobial agents, antioxidant agents, oxygen scavengers, carbon dioxide emitters, and ethylene scavengers. The aim of this review is to present a concise but comprehensive summary on the progress of electrospinning techniques for active food packaging. Emphasis is placed on the tunability of the electrospinning technique, which achieves the modification of fiber composition, orientation, and architecture. Efforts are also made to provide functionalized strategies of electrospun polymeric nanofibers for food packaging application. Furthermore, the existing limitations and prospects for developing electrospinning in food packaging area are discussed.  相似文献   

10.
Food safety and extended shelf life linked to convenience were the major reasons for the development of the packaging field. However, advances in material science and the widespread encapsulation technologies are allowing the establishment of new concepts for packages, such as intelligent and active packages. Particulate systems have been developed in recent years for the most diverse area with several purposes that can be employed to improve packaging performance mainly focusing on the modification of barrier properties. This review analyzes the recent developments using encapsulation in food packaging and the main concepts about mass transfer evolved in the functionality of these packages, as well as discusses the research challenges faced by the food packaging sector.  相似文献   

11.
Interest in the use of active and intelligent packaging systems for meat and meat products has increased in recent years. Active packaging refers to the incorporation of additives into packaging systems with the aim of maintaining or extending meat product quality and shelf-life. Active packaging systems discussed include oxygen scavengers, carbon dioxide scavengers and emitters, moisture control agents and anti-microbial packaging technologies. Intelligent packaging systems are those that monitor the condition of packaged foods to give information regarding the quality of the packaged food during transport and storage. The potential of sensor technologies, indicators (including integrity, freshness and time-temperature (TTI) indicators) and radio frequency identification (RFID) are evaluated for potential use in meat and meat products. Recognition of the benefits of active and intelligent packaging technologies by the food industry, development of economically viable packaging systems and increased consumer acceptance is necessary for commercial realisation of these packaging technologies.  相似文献   

12.
Fossil-based plastic materials are an integral part of modern life. In food packaging, plastics have a highly important function in preserving food quality and safety, ensuring adequate shelf life, and thereby contributing to limiting food waste. Meanwhile, the global stream of plastics into the oceans is increasing exponentially, triggering worldwide concerns for the environment. There is an urgent need to reduce the environmental impacts of packaging waste, a matter raising increasing consumer awareness. Shifting part of the focus toward packaging materials from renewable resources is one promising strategy. This review provides an overview of the status and future of biobased and biodegradable films used for food packaging applications, highlighting the effects on food shelf life and quality. Potentials, limitations, and promising modifications of selected synthetic biopolymers; polylactic acid, polybutylene succinate, and polyhydroxyalkanoate; and natural biopolymers such as cellulose, starch, chitosan, alginate, gelatine, whey, and soy protein are discussed. Further, this review provides insight into the connection between biobased packaging materials and innovative technologies such as high pressure, cold plasma, microwave, ultrasound, and ultraviolet light. The potential for utilizing such technologies to improve biomaterial barrier and mechanical properties as well as to aid in improving overall shelf life for the packaging system by in-pack processing is elaborated on.  相似文献   

13.
Antimicrobial edible films and coatings   总被引:2,自引:0,他引:2  
Increasing consumer demand for microbiologically safer foods, greater convenience, smaller packages, and longer product shelf life is forcing the industry to develop new food-processing, cooking, handling, and packaging strategies. Nonfluid ready-to-eat foods are frequently exposed to postprocess surface contamination, leading to a reduction in shelf life. The food industry has at its disposal a wide range of nonedible polypropylene- and polyethylene-based packaging materials and various biodegradable protein- and polysaccharide-based edible films that can potentially serve as packaging materials. Research on the use of edible films as packaging materials continues because of the potential for these films to enhance food quality, food safety, and product shelf life. Besides acting as a barrier against mass diffusion (moisture, gases, and volatiles), edible films can serve as carriers for a wide range of food additives, including flavoring agents, antioxidants, vitamins, and colorants. When antimicrobial agents such as benzoic acid, sorbic acid, propionic acid, lactic acid, nisin, and lysozyme have been incorporated into edible films, such films retarded surface growth of bacteria, yeasts, and molds on a wide range of products, including meats and cheeses. Various antimicrobial edible films have been developed to minimize growth of spoilage and pathogenic microorganisms, including Listeria monocytogenes, which may contaminate the surface of cooked ready-to-eat foods after processing. Here, we review the various types of protein-based (wheat gluten, collagen, corn zein, soy, casein, and whey protein), polysaccharide-based (cellulose, chitosan, alginate, starch, pectin, and dextrin), and lipid-based (waxes, acylglycerols, and fatty acids) edible films and a wide range of antimicrobial agents that have been or could potentially be incorporated into such films during manufacture to enhance the safety and shelf life of ready-to-eat foods.  相似文献   

14.
Globalization of food trade, increasing demand for ready to eat fresh food products, and awareness among consumers towards side effects of chemical preservatives have led to research and development in the area of biopreservation. Biopreservation basically involves inhibition or killing of food spoilage microorganisms by the application of other microbes or their antimicrobial products. Bacteriocins are ribosomally synthesized peptides having potential as biopreservatives. The enhanced, stable, continuous, and economically viable production of these preservatives can be carried out by employing immobilization technology. Various matrices, operational conditions, and fermentation systems have been explored for achieving maximum bacteriocin production through immobilization; besides these, immobilization can be used for the application of bacteriocins in various packaging materials or films for their functional effects at the surface of different food products. Efficiency of an antimicrobial packaging system can be increased by its application in combination with other methods, including high-pressure processing (HPP), which in turn can improve the shelf life of food products. These antimicrobial packaging systems can play a significant role in extending shelf life of food products by reducing the risk of foodborne pathogens, thereby enhancing their quality and safety.  相似文献   

15.
Olive oil has gained much appreciation among consumers worldwide leading to increased markets as well as greater consumer expectation and thus more challenges for the relevant food sector. By understanding the product, its interactions with the environment, and the protective role of the package, decisions can be made on the barrier properties required of the packaging materials to achieve the desired shelf life. To this end, the shelf life of packaged olive oil under various storage and distribution environments can be predicted by mathematical modeling. This review examines the basic factors affecting the shelf life of olive oil in different packaging systems and describes the main oxidative degradation mechanisms for them. Since an experimental investigation to correlate the basic quality factors and the shelf life of a product is time- and effort-consuming, the use of mathematical modeling for the prediction of packaged olive oil shelf life is also discussed. In the presented works, shelf life predictions were based on the most consumer-related attributes; namely, the evolution of olive oil flavor compounds under various packaging and storage conditions. The validation of the simulations against known experimental results showed a very good correlation, confirming the value of the mathematical approach for a quick and accurate prediction of shelf life of oxidation-sensitive products.  相似文献   

16.
Olive oil has gained much appreciation among consumers worldwide leading to increased markets as well as greater consumer expectation and thus more challenges for the relevant food sector. By understanding the product, its interactions with the environment, and the protective role of the package, decisions can be made on the barrier properties required of the packaging materials to achieve the desired shelf life. To this end, the shelf life of packaged olive oil under various storage and distribution environments can be predicted by mathematical modeling. This review examines the basic factors affecting the shelf life of olive oil in different packaging systems and describes the main oxidative degradation mechanisms for them. Since an experimental investigation to correlate the basic quality factors and the shelf life of a product is time- and effort-consuming, the use of mathematical modeling for the prediction of packaged olive oil shelf life is also discussed. In the presented works, shelf life predictions were based on the most consumer-related attributes; namely, the evolution of olive oil flavor compounds under various packaging and storage conditions. The validation of the simulations against known experimental results showed a very good correlation, confirming the value of the mathematical approach for a quick and accurate prediction of shelf life of oxidation-sensitive products.  相似文献   

17.
For the past two decades, consumer demand for minimally processed seafoods with good sensory acceptability and nutritive properties has been increasing. Nonthermal food processing and preservation technologies have drawn the attention of food scientists and manufacturers because nutritional and sensory properties of such treated foods are minimally affected. More importantly, shelf‐life is extended as nonthermal treatments are capable of inhibiting or killing both spoilage and pathogenic organisms. They are also considered to be more energy‐efficient and to yield better quality when compared with conventional thermal processes. This review provides insight into the nonthermal processing technologies currently used for shelf‐life extension of seafoods. Both pretreatments such as acidic electrolyte water and ozonification and processing technologies, including high hydrostatic pressurization, ionizing radiation, cold plasma, ultraviolet light, and pulsed electric fields, as well as packaging technology, particularly modified atmosphere packaging, have been implemented to lower the microbial load in seafood. Thus, those technologies may be the ideal approach for the seafood industry, in which prime quality is maintained and safety is assured for consumers.  相似文献   

18.
Eva Almenar 《LWT》2009,42(2):587-593
Active packaging is becoming in an emerging food technology to improve quality and safety of food products, commonly based on the retention or release of compounds which are beneficial for the product. In this work, an active packaging system based on the release of 2-nonanone has been optimized to increase the postharvest shelf life of fresh wild strawberries during the marketing stage. To avoid that excessive levels of this volatile could affect the berries' taste and cause consumer rejection of the product, a preliminary sensory analysis was carried out to determine the threshold value of 2-nonanone, 7.16 mg/kg fresh wild strawberries. Taking this threshold value into account, diverse quantities of 2-nonanone were tested to optimize the packaging parameters. Wild strawberry fruits were packaged in the active packages developed and their quality monitored during storage at 10 °C with exposure to light to simulate real-life conditions on supermarket shelves. The analyses of weight loss, SSC, gas composition and aroma volatiles provide evidences that exposure to the highest-tested 2-nonanone concentrations are an effective way of maintaining the quality of wild strawberries during distribution and sale without modifying their typical taste.  相似文献   

19.
Modified atmosphere packaging (MAP) has been applied in the food industry for about 90 years to extend shelf life and maintain quality of fresh and fresh-cut foods. Recently, MAP has experienced a rapid development in both scientific and industrial communities, which was one of the most appropriate and practical technologies for packaging fresh and fresh-cut produce. This paper reviews some recent developments of newly emerged MAP systems such as high-oxygen MAP, controlled MAP, and intelligent MAP and provides an overview of MAP applications for fresh and fresh-cut fruits, vegetables, mushrooms, meat, and aquatic products.  相似文献   

20.
随着社会的发展,人们对食品安全和减少资源浪费的意识不断提高,对可用于感知、追踪、监测、检测的果蔬智能包装材料的需求不断增加。针对此现状,本文综述了果蔬智能包装中传感器的类型以及应用的研究进展,分析了传感器在果蔬智能包装中应用的阻碍因素以及发展趋势。将传感器用于果蔬智能包装能监测和检测果蔬的品质变化,可根据其提供的信息对外部环境条件做出调整以延长果蔬保质期,具有巨大的市场价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号