首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heterosis and breed differences were estimated for milk yield traits, somatic cell score (SCS), and productive life (PL), a measure of longevity. Yield trait data were from 10,442 crossbreds and 140,421 purebreds born since 1990 in 572 herds. Productive life data were from 41,131 crossbred cows and 726,344 purebreds born from 1960 through 1991. The model for test-day yields and SCS included effects of herd-year-season, age, lactation stage, regression on sire's predicted transmitting ability, additive breed effects, heterosis, and recombination. The model for PL included herd-year-season, breed effects, and general heterosis. All effects were assumed to be additive, but estimates of heterosis were converted to a percentage of the parent breed average for reporting. Estimates of general heterosis were 3.4% for milk yield, 4.4% for fat yield, and 4.1% for protein yield. A coefficient of general recombination was derived for multiple-breed crosses, but recombination effects were not well estimated and small gains, not losses, were observed for yield traits in later generations. Heterosis for SCS was not significant. Estimated heterosis for PL was 1.2% of mean productive life and remained constant across the range of birth years. Protein yield of Brown Swiss x Holstein crossbreds (0.94 kg/d) equaled protein yield of purebred Holsteins. Fat yields of Jersey x Holstein and Brown Swiss x Holstein crossbreds (1.14 and 1.13 kg/d, respectively) slightly exceeded that of Holsteins (1.12 kg/d). With cheese yield pricing and with all traits considered, profit from these crosses exceeded that of Holsteins for matings at breed bases. For elite matings, Holsteins were favored because the range of evaluations is smaller and genetic progress is slower in breeds other than Holstein, in part because fewer bulls are sampled. A combined national evaluation of data for all breeds and crossbreds may be desirable but would require an extensive programming effort. Animals should receive credit for heterosis when considered as mates for another breed.  相似文献   

2.
Breed additive, maternal, and heterozygotic effects on 11 monthly postpartum body weights, average size, weight gain, age at first calving, and days open were estimated by linear regression analyses from records of 680 purebred and crossbred animals. Calving year, age, and milk yield were significant environmental effects. Positive regressions of age on body weights indicated late calving cows were heaviest postpartum and had most days open. Negative regressions of milk yield on weight gain and postpartum weight showed greatest losses of weight associated with highest yields. There were breed differences in growth; purebreds highest to lowest were Brown Swiss, Holstein, Red Dane, Jersey, and Ayrshire and for weight gain, Brown Swiss, Ayrshire, and for weight gain, Brown Swiss, Ayrshire, Jersey, Holsteins, and Red Dane. Crosses were superior to purebreds in these traits. Additive effects of Holstein were greater than Ayrshire, Jersey, and Red Dane for postpartum body weights and average size. All constants for heterozygotic effect combinations were significant for postpartum weights and average size. Heterozygosity effects increased in magnitude with advancing lactation. Generally, age at first calving and postpartum interval to conception reflected little heterozygotic or maternal effects. There was some indication of breed differences in mean and additive effects for age at first calving.  相似文献   

3.
Selection singly on milk yield and calculated profitability traits, selection indexes, and regression indexes were compared for the relative gains in expected profit to 72 mo of age or life time profit. Indexes consisted of five traits of the first lactation: milk, fat percent, days in milk, number of breedings, and age at first calving. The study was on 1806 Holstein cows sired by 404 bulls in 38 California herds. Genetic gain in total profit was 13 to 14% greater when selection was on estimated profit to 41 mo than on milk yield to 305 days in the first lactation. Selection on traits of estimated profit on three bases, to 305 days in first lactation, to end of first lactation, and to 41 mo of age was 2 to 14% more efficient for genetic gain in total profit than selection on corresponding traits of milk yield or selection indexes. Regression indexes were 3 to 19% more efficient than selection indexes for predicting subsequent cumulative profit. In contrast, selection indexes were 6 to 20% more efficient than regression indexes for genetic gain in total profit. Heritabilities for estimated profit and traits of milk yield in the first lactation ranged from .26 to .49 for cows with two or more calvings. Heritabilities for profit to end of first lactation and to 41 mo of age exceeded comparable milk yield traits by 15 to 27%. The economic value of a 1-mo decrease in age at first calving was equivalent to an increase of 138 kg milk yield to the end of the first lactation for gain in total profit to 72 mo of age. Similarly, the genetic effects, or relative selection value, of a 1-mo decrease in age at first calving is valued at approximately 471 kg milk.  相似文献   

4.
During the last decade, the use of systematic crossbreeding in dairy cattle herds has increased in several countries of the world. The aim of this study was to estimate the effect of breed proportion and heterosis on milk production traits and udder health traits in dairy cattle. The study was based on records on milk yield (MY), protein yield (PY), fat yield (FY), somatic cell score (SCS), and mastitis (MAST) from 73,695 first-lactation dairy cows in 130 Danish herds applying systematic crossbreeding programs. Around 45% of the cows were crosses between Danish Holstein (DH), Danish Red (DR), or Danish Jersey (DJ), and the remaining were purebred DH, DR, or DJ. The statistical model included the fixed effects of herd-year, calving month, and calving age and an effect representing the lactation status of the cow. In addition, the model included a regression on calving interval from first to second lactation, a regression on the proportion of DH, DR, and DJ genes, and a regression on the degree of heterozygosity between DH and DR, DH and DJ, and DR and DJ. Random effects were the genetic effect of the cow and a residual. The effect of breed proportions was estimated relatively to DH. For MY, a pure DR yielded 461 kg milk less than DH, whereas a pure DJ yielded 2,259 kg milk less than a pure DH. Compared with DH, PY was 41.7 kg less for DJ, whereas PY for DR was 4.0 kg less than for DH. For FY, a DR yielded 10.6 kg less than DH, whereas there was no significant effect of breed proportion between DJ and DH. A DR cow had lower SCS (0.13) than DH, whereas DJ had higher SCS (0.14) than DH. There was no significant effect of breed proportion on MAST between the 3 breeds. Heterosis was significant in all combinations of breeds for MY, FY, and PY. Heterosis for crosses between DH and DR was 257 kg (3.2%), 11.9 kg (3.2%), and 8.9 kg (3.2%) for MY, PY, and FY, respectively. Corresponding figures for crosses between DH and DJ were 314 kg (4.4%), 14.3 kg (4.4%), and 10.4 kg (4.0%), whereas heterosis between DR and DJ was 462 kg (6.7%), 19.6 kg (6.7%), and 13.9 kg (5.4%) for MY, PY, and FY, respectively. Heterosis was only significant for SCS in the crosses between DH and DR. Heterosis effects for MAST were nonsignificant for all the crosses. The results obtained in this study demonstrate that in first lactation cows, there is a positive effect of heterosis on milk production traits, but limited effect on udder health traits.  相似文献   

5.
Estimates of genetic correlations were .17 between first lactation milk yield and concurrent calving interval, .10 between second lactation milk yield and first calving interval, and .82 between first and second milk yields. Corresponding phenotypic correlations were .27, .16, and .58. Heritability estimates were .27 and .25 for first and second lactations and .15 for calving interval. Estimates were averages of two samples of 15 New York State herds averaging 144 AI-sired Holstein cows and 30 sires. Milk yields were 305-d, mature equivalent. Calving interval was days between first and second freshening. First milk records without a second freshening were included. Multiple-trait animal model included separate herd-year-season effects for first and second milk yields and calving interval. Numerator relationships among animals within herd, except for daughter-dam relationships, were included. The REML with the expectation-maximization algorithm was used to estimate (co)variance matrices among genetic values and environmental effects for the three traits. Results indicate a need to adjust milk records for the phenotypic effects of current and previous calving interval. The genetic association, however, between fertility and milk yield appears small. Genetic improvement of 450 kg of milk yield may result in 2 added d to first calving interval.  相似文献   

6.
The objectives of this study were to compare Holstein (HO), Brown Swiss (BS), and their crosses for milk, fat, and protein yields, somatic cell score (SCS), days open (DO), and age at first calving (AFC), and to estimate the effects of heterosis and recombination. First through fifth lactation records were obtained from 19 herds milking crosses among BS and HO. The edited data set included 6,534 lactation records from 3,473 cows of the following breed combinations: 2,125 pure HO, 926 pure BS, 256 BS sire × HO dam (SH), 105 backcrosses to BS (SX), 18 HO sire × BS dam, and 43 backcrosses to HO. Least squares means for daily milk, fat, and protein yields, mature-equivalent milk, fat, and protein yields, SCS, DO, and AFC were calculated for breed combinations with a model that included fixed effects of age within parity (except for AFC), days in milk for daily yield and SCS, herd-year-season of calving, and breed combination. Cow and error were random effects. Breed combination was replaced with regressions on coefficients for heterosis and recombination in a second analysis. Last, data were analyzed with a 5-trait animal model that included a single pedigree file for both breeds and coefficients for heterosis and recombination. The least squares means for fat production were 1.21, 1.15, 1.27, and 1.16 kg for HO, BS, SH, and SX, respectively, which corresponds to a heterosis estimate of 7.30% and a recombination estimate of −3.76%. Heterosis and recombination estimates for protein production were 5.63% and −3.31%, respectively. Heterosis estimates increased for fat yield (10.38%) and protein yield (7.07%) when maternal grandsire identification from a known artificial insemination sire was required. Regression coefficients indicated an 11.44-d reduction in DO due to heterosis. Heterosis estimates for SCS were inconsistent. Regression on heterosis for SCS was significant and favorable (−0.22) when the breed of sire was BS, but nonsignificant and unfavorable when sire breed was HO (0.43). Heterosis estimates were favorable for all traits, whereas recombination effects tended to be unfavorable for yield traits. Reduced performance of future generations did not appear to be the result of inseminating crossbred cows with inferior sires. Results indicated that first-generation crosses among BS and HO compared favorably with HO. Yield in subsequent generations was somewhat below expectations, perhaps due to recombination loss in HO.  相似文献   

7.
The effects of inbreeding, heterosis, recombination loss, and percentage Holstein on the estimation of predicted transmitting abilities for fertility traits (calving interval, number of days from calving to first insemination, nonreturn rate, number of inseminations) and correlated traits (milk yield at test nearest d 110 and body condition score) were examined in a mixed population of Holstein and Friesian cattle. An unfavorable effect of percentage Holstein on calving interval was observed, resulting in a 12-d increase for pure Holsteins compared with pure Friesians. Insemination traits were less affected by percentage Holstein, with 3% more animals returning to first service within 56 d and 0.1 more inseminations required for Holstein animals. Heterosis and recombination loss affected some of the traits. Heterosis had a favorable effect on yield, with a 0.35-kg difference between a pure and cross-bred animal for test milk. There was a reduction of 1 d to first insemination between a pure and first-crossbred animal. Inbreeding had a significant and unfavorable effect on all traits. The difference between a noninbred animal and an animal with an inbreeding coefficient of 10% was a 2.8-d increase in calving interval, a 1.7-d increase in days to first insemination, a 1% increased probability to return to estrus at first service, 0.03 more inseminations, a 0.27-unit decrease in body condition, and a 0.54-kg decrease in milk on test nearest d 110. The effect of inbreeding depression was more pronounced at higher levels of inbreeding. The rank correlations between the predicted transmitting abilities for fertility and correlated traits, with and without the additional nonadditive effects in the model, were over 0.99. Steps should be taken to control the rise in inbreeding, or the effects on fertility and correlated traits such as milk production will begin to manifest themselves.  相似文献   

8.
This study investigated associations between single nucleotide polymorphisms (SNP) in the leptin, leptin receptor, and neuropeptide Y (NPY) genes with growth, milk production, and fertility traits. Holstein Friesian heifers from 19 UK dairy farms were recruited at birth, providing an initial population of 509. Animals were monitored until they either reached the end of their second lactation or were culled. Size (weight, height, length, girth) was measured at 1, 6, and 15 mo to assess growth traits. Heifer fertility was assessed by recording age at service, age at conception, age at first calving, and number of services. Cow fertility was assessed by recording days from calving to service and conception, services per conception, percentage of animals in calf at 100 d after calving and the calving interval in each lactation. Milk production was recorded as days in milk, total milk per lactation, 305-d yield, milk per day, and peak yield. Mixed model analyses revealed that leptin SNP were associated with early skeletal growth (height, A1457G; length, A59V), fertility (UASMS1, UASMS2, A1457G, A59V) and milk production (A59V). The leptin receptor SNP (T945M) was only weakly associated with milk per day and days to first service. The NPY SNP (NPY1) was associated with the prevalence of the animal being in calf 100 d after calving and 305-d milk yield in the first lactation. The association of leptin SNP with fertility traits in heifers, in addition to lactating cows, suggests that some effects on fertility are direct and not necessarily mediated via altered tissue mobilization. In accord with this, other work has shown that leptin can affect oocyte quality and early embryo development. These results support the use of leptin SNP to inform marker-assisted selection in dairy cows.  相似文献   

9.
The objective of the present study was to evaluate the effects of postpartum oral calcium supplementation on milk yield, energy-corrected milk yield, milk fat concentration, milk protein concentration, and somatic cell count linear score across the first 3 monthly tests postpartum, peak milk yield, risk of pregnancy at first service, and hazard of pregnancy by 150 d in milk on 1,129 multiparous Jersey and Jersey × Holstein crossbreed cows from 2 commercial dairies. After calving, cows were systematically assigned to control (no oral calcium supplementation; n = 567) or oral calcium supplementation at 0 and 1 d in milk (oral Ca; 50 to 60 g of calcium as boluses; n = 562). Monthly test milk yield, composition, and somatic cell count information was obtained from the Dairy Herd Improvement Association. Herd records were used for reproductive data. Statistical analysis was conducted using generalized multiple linear, Poisson, and Cox's hazard regressions. Treatment effects were evaluated considering cow-level information available at parturition (parity, breed, previous lactation milk yield, previous lactation length, dry period length, gestation length, body condition, and locomotion score at calving, calving ease, and calf sex). In addition, for a subset of cows serum calcium concentration before treatment administration was evaluated (n = 756). Overall, oral calcium supplementation did not affect the evaluated productive and reproductive variables. However, effects conditional to previous lactation length and calving locomotion score were observed. Milk yield and energy-corrected milk yield across the first 3 monthly tests were 1.8 kg/d higher for supplemented cows with a previous lactation length within the fourth quartile, compared with control cows on the same quartile. Energy-corrected milk yield tended to be 1.1 kg/d lower for supplemented cows with a previous lactation length within the first quartile, compared with control counterparts. Peak milk yield tended to be 1.6 kg higher for supplemented cows with a calving locomotion score ≥2, compared with control cows with the same locomotion score. Treatment effects were not conditional to serum calcium concentration before treatment administration. Our results suggest that postpartum oral calcium supplementation effects are conditional to cow-level factors such as previous lactation length and calving locomotion score in multiparous Jersey and Jersey × Holstein crossbreed cows.  相似文献   

10.
A field study using seven Holstein herds was conducted to determine effects of prepartum milking on milk production, health disorders, and reproductive performance. In each herd, 80 cows (30% first lactation cows) were assigned 1 mo prior to expected calving date to one of two treatments: postpartum or prepartum milking. The group milked prepartum was machine-milked twice daily at regular milking intervals beginning 14 d prior to date of expected calving. The group milked postpartum was milked for the first time after calving. The day prior to calving, 36, 33, and 31% of the cows milked prepartum produced less than 4.5 kg, 4.5 to 9 kg, and greater than 9 kg of milk, respectively. No relationship existed between days milked prepartum and prepartum milk yield. Lactation milk yield and persistency were not affected by prepartum milking. Prepartum milking reduced incidence of milk fever and mastitis during the 1st mo after parturition. Treatment was not a significant source of variation for reproductive performance or body condition; however, culling was higher for cows milked postpartum. Results indicate no adverse effects on cow performance due to prepartum milking nor increase in lactation milk yield.  相似文献   

11.
The aim of this study was to evaluate the short- and long-term effects of initial serum total protein (STP) concentration, average starter feed intake (SI) during the last week of the preweaning period, and average daily gain (ADG) on the growth, fertility, and performance of Holstein heifers during their first lactation. Eighty-four female Holstein dairy calves were weaned at d 56 of age and then the study continued until the end of the first lactation. Growth performance, including body weight, ADG, withers height, and its change were analyzed monthly from 3 to 450 d of life, and reproduction data and performance in the first lactation of primiparous dairy heifers over a 4-yr period (2015 to 2019) were recorded. In the first 24 h of life, calves received 4 L of colostrum (<2 h and <12 h after birth); on d 2 and 3: 2 feedings/d of 2 L of transition milk; from d 4 to 49: 6 L/d of milk replacer (150 g of powder/L as-fed) in 3 feedings; and from d 50 to 56: 2 L/d of milk replacer in 1 feeding. The calves were fed pelleted starter feed from d 4 to 56, and after that from 8 wk until 3 mo of age, a dry total mixed ration with an 85:15 ratio of weaning pelleted starter to straw. From 3 to 7 mo and from 8 mo of age to calving, the total mixed ration contained 16.9% and ~14.0% crude protein, respectively, on a dry matter basis and ~2.40 Mcal of metabolizable energy/kg on a dry matter basis. The results of the current study showed that the initial STP concentration of primiparous dairy heifers was associated with improved growth performance, especially greater body weight and withers height. In addition, with increasing levels of initial STP concentration, age at first estrus, artificial insemination (AI) service, pregnancy, and calving was decreased by 16, 18, 25, and 25 d, respectively. Initial STP concentration was positively correlated with milk production and increased total milk yield and yield of energy-corrected milk by about 1,558 kg and 1,149 kg during first lactation. Calves with higher average starter feed intake during the last week of the preweaning period had better growth performance, which in turn was positively associated with fertility parameters, accelerated first estrus (by 17 d), and reduced age at AI service (by 13 d). Preweaning ADG was favorably associated with fertility performance of heifers, with faster occurrence of first estrus and a reduction in age at AI service, pregnancy, and calving. Also, increasing preweaning ADG increased milk yield, energy-corrected milk, and 4% fat-corrected milk at 305 DIM by about 829, 754, and 763 kg at first lactation of primiparous heifers. These results indicate that in the rearing period, particular attention should be paid to the initial STP concentration, average SI during the last week of this period, and rearing ADG to increase growth, fertility, and performance in the first lactation of primiparous dairy heifers.  相似文献   

12.
The objective of this study was to evaluate the effect of body condition score (BCS), body weight (BW), average daily weight gain (ADG), and age at first calving (AFC) of Holstein heifers on production and reproduction parameters in the 3 subsequent lactations. The data set consisted of 780 Holstein heifers calved at 2 dairy farms in the Czech Republic from 2007 to 2011. Their BW and BCS were measured at monthly intervals during the rearing period (5 to 18 mo of age), and the milk production and reproduction data of the first 3 lactations were collected over an 8-yr period (2005 to 2012). The highest milk yield in the first lactation was found in the group with medium ADG (5 to 14 mo of age; 0.949 to 0.850 kg of ADG). The highest average milk yield over lifetime performance was detected in heifers with the highest total ADG (≥0.950 kg/d). The difference in milk yield between the evaluated groups of highest ADG (in total and postpubertal growth ≥0.950 kg/d and in prepubertal growth ≥0.970 kg/d) and the lowest ADG (≤0.849 kg/d) was approximately 1,000 kg/305 d per cow. The highest milk yield in the first lactation was found in the group with the highest AFC ≥751 d, for which fat and protein content in the milk was not reduced. Postpubertal growth (11 to 14 mo of age) had the greatest effect on AFC. The group with lowest AFC ≤699 d showed a negative effect on milk yield but only in the first 100 d of the first parity. The highest ADG was detrimental to reproduction parameters in the first lactation. The highest BW at 14 mo (≥420 kg) led to lower AFC. Groups according to BCS at 14 mo showed no differences in AFC or milk yield in the first lactation or lifetime average production per lactation. We concluded that low AFC ≤699 d did not show a negative effect on subsequent production and reproduction parameters. Therefore, a shorter rearing period is recommended for dairy herds with suitable management.  相似文献   

13.
Estimating milk, fat, and protein lactation curves with a test day model.   总被引:2,自引:0,他引:2  
Test day models were used to estimate lactation curves for milk, fat, protein, fat percentage, and protein percentage and to study the influence of age, season, and herd productivity on Holstein lactation curves. Random effects of lactation within herd and fixed effects of herd test date were absorbed. Fixed effects of cow's age on test day and either DIM (57 divisions) by parity (1, 2, greater than or equal to 3) class or season of calving (winter or summer) by DIM by parity class were estimated. Lactation curves for yield traits derived from DIM solutions were flatter for first versus later lactation, even without addition of age effects. Differences between lactation curves for the two seasons were slight, suggesting that most observed seasonal differences are caused by seasonal productivity accounted for by herd test date effects. At peak, winter calving cows yielded slightly more milk of similar fat percentage but of lower protein percentage than those calving in summer. Data were also partitioned into nine subsets based on rolling herd milk and fat percentage. Lactation curves for yield traits, but not percentage traits, varied with rolling herd milk. Lactation curves for fat yield and percentage varied with rolling herd fat percentage.  相似文献   

14.
The main objective of this study was to estimate genetic relationships between lactation persistency and reproductive performance in first lactation. Relationships with day in milk at peak milk yield and estimated 305-d milk yield were also investigated. The data set contained 33,312 first-lactation Canadian Holsteins with first-parity reproductive, persistency, and productive information. Reproductive performance traits included age at first insemination, nonreturn rate at 56 d after first insemination as a virgin heifer and as a first-lactation cow, calving difficulty at first calving and calving interval between first and second calving. Lactation persistency was defined as the Wilmink b parameter for milk yield and was calculated by fitting lactation curves to test day records using a multiple-trait prediction procedure. An 8-trait genetic analysis was performed using the Variance Component Estimation package (VCE 5) via Gibbs sampling to estimate genetic parameters for all traits. Heritabilities of persistency, day in milk at peak milk yield and estimated 305-d milk yield were 0.18, 0.09 and 0.45, respectively. Heritabilities of reproduction were low and ranged from 0.03 to 0.19. The highest heritability was for age at first insemination. Heifer reproductive traits were lowly genetically correlated, whereas cow reproductive traits were moderately correlated. Heifers younger than average when first inseminated and/or conceived successfully at first insemination tended to have a more persistent first lactation. First lactation was more persistent if heifers had difficulty calving (r(g) = 0.43), or conceived successfully at first insemination in first lactation (r(g) = 0.32) or had a longer interval between first and second calving (r(g) = 0.17). Estimates of genetic correlations of reproductive performance with estimated 305-d milk yield were different in magnitude, but similar in sign to those with persistency (0.02 to 0.51).  相似文献   

15.
Original data consisted of 31,777 records of progeny of 1442 sires for calvings between 1975 and 1983. Unadjusted means for milk yield (kg), days in milk, days dry, calving interval, days carried calf, and age at calving were 4281, 267, 88, 421, 145, and 36.6. Estimated total variance for first lactation milk yield by Henderson's method 3 was 1,385,436 kg2 with sire and error variances accounting for 1.8 and 98.2%. Heritabilities for milk yield, lactation length, age at calving, and days carried calf were .07, .06, 2.59, and .01. High estimate for age was attributed to confounding of sires with season of calving. Genetic and phenotypic correlations between traits were milk and lactation length, .76 and .72; milk and age at calving, .17 and -.04; milk and days carried calf, -2.11 and .13; lactation length and age at calving, -.13 and -.06; lactation length and days carried calf, .87 and 16.; age at calving and days carried calf, -.60 and -.03. Sires with at least 10 daughters were evaluated by best linear unbiased prediction procedures. First lactation sire values for milk ranged from 359 to -340 kg with an average difference between sires of 12 kg. Sire values using all lactations ranged from 505 to -286 kg with an average difference between sires of 13 kg. Rank correlation between all and first lactation evaluations was .77.  相似文献   

16.
The aim of this study was to use survival analysis to assess the relationship between reproduction traits and functional longevity of Canadian dairy cattle. Data consisted of 1,702,857; 67,470; and 33,190 Holstein, Ayrshire, and Jersey cows, respectively. Functional longevity was defined as the number of days from first calving to culling, death, or censoring; adjusted for the effect of milk yield. The reproduction traits included calving traits (calving ease, calf size, and calf survival) and female fertility traits (number of services, days from calving to first service, days from first service to conception, and days open). The statistical model was a Weibull proportional hazards model and included the fixed effects of stage of lactation, season of production, the annual change in herd size, and type of milk recording supervision, age at first calving, effects of milk, fat, and protein yields calculated as within herd-year-parity deviations for each reproduction trait. Herd-year-season of calving and sire were included as random effects. Analysis was performed separately for each reproductive trait. Significant associations between reproduction traits and longevity were observed in all breeds. Increased risk of culling was observed for cows that required hard pull, calved small calves, or dead calves. Moreover, cows that require more services per conception, a longer interval between first service to conception, an interval between calving to first service greater than 90 d, and increased days open were at greater risk of being culled.  相似文献   

17.
The objective was to examine milk production, health, and economic performance among Holstein heifers during first lactation on 3 commercial dairy farms in California. Heifers (n = 1905) were moved to the breeding group between 360 and 390 d of age and grouped retrospectively according to age at first calving (AFC) as low (< or =700 d), medium (701 to 750 d), and high (> or =751 d). Within farm, growing heifers were managed similarly, as were lactating primiparous cows, for the first 310 d in lactation. Heifers were fed to gain 0.70 to 0.80 kg/d from 4 mo of age to breeding, and 0.8 to 0.9 kg/d from breeding to 252 to 258 d of pregnancy. First calving at <700 d was associated with reduced yields of milk and milk components. Cows in the high age group produced more milk fat and true protein than medium and low cows. Incidence of stillbirths was highest for cows in the low group (19.8%), but stillbirths were also a concern for those calving at medium (16.1%) or high age groups (13.5%). Both low and high cows had lower conception rates at first postpartum AI, and abortions averaged 9.8% across groups. Days open and number of inseminations were lower for medium than low cows. Incidence of mastitis and lameness was lowest for cows in the medium group. Culling and mortality rates were not affected by AFC, but among those that died, cows in the low group tended to die earlier postpartum than cows in the high group. Heifers in the medium group had an adjusted income value numerically higher by 138.33 dollars and 98.81 dollars compared with those in the low and high groups, respectively. First calving at <700 d compromised first lactation yields of milk and milk components and impaired reproductive performance. However, extending AFC beyond 750 d did not improve lactation, reproduction, or health of primiparous cows. Although not preassigned to age groups before start of breeding, Holstein heifers managed as in this study had the highest economic return when calving between 23 and 24.5 mo of age.  相似文献   

18.
Crossbred and purebred dairy cattle in warm and cool seasons   总被引:1,自引:0,他引:1  
This study was to determine if breed groups ranked differently in warm (May to August) and cool (November to February) seasons of calving and to determine if heterosis was more important in the warm season. A total of 719 records of cows in first lactation in four herds in the southeastern United States were used. Breeds were Holsteins, Brown Swiss, and Jerseys and the crosses among them. Milk and milk fat yields were greater in the cool season than in the warm season. Holsteins exceeded other breeds for milk and milk fat yield in both seasons, but their superiority was less among cows calving from May through August. Days open were longer for Holsteins, particularly in the warm season. In the cool season only the 3/4 Holstein X 1/4 Swiss group exceeded Holsteins for milk, but two groups--1/2 Holsteins X 1/2 Swiss and 5/8 Holstein X 1/4 Swiss-1/8 Jersey--were higher in the warm season. In the cool season three crossbred groups--1) 1/2 Holstein X 1/2 Swiss (Holstein sires), 2) 3/4 Holstein X 1/4 Swiss, and 3) 1/2 Holstein X 1/4 Swiss-1/4 Jersey--had greater milk fat yields than Holsteins, and a fourth--1/2 Holstein X 1/2 Jersey--yielded an equal amount. In the warm season six of the eight crossbred groups had greater milk fat yields than Holsteins. More crossbreds exceeded Holsteins in the warm than in the cool season, suggesting interactions for yields. There was slightly more heterosis in warm than in cool seasons for all traits.  相似文献   

19.
We compared the outcome of mating programs based on different evaluation models that included nonadditive genetic effects (dominance and heterozygosity) in addition to additive effects. The additive and dominance marker effects and the values of regression on average heterozygosity were estimated using 632,003 single nucleotide polymorphisms from 7,902 and 7,510 Holstein cows with calving interval and production (milk, fat, and protein yields) records, respectively. Expected progeny values were computed based on the estimated genetic effects and genotype probabilities of hypothetical progeny from matings between the available genotyped cows and the top 50 young genomic bulls. An index combining the traits based on their economic values was developed and used to evaluate the performance of different mating scenarios in terms of dollar profit. We observed that mating programs with nonadditive genetic effects performed better than a model with only additive effects. Mating programs with dominance and heterozygosity effects increased milk, fat, and protein yields by up to 38, 1.57, and 1.21 kg, respectively. The inclusion of dominance and heterozygosity effects decreased calving interval by up to 0.70 d compared with random mating. The average reduction in progeny inbreeding by the inclusion of nonadditive genetic effects in matings compared with random mating was between 0.25 to 1.57 and 0.64 to 1.57 percentage points for calving interval and production traits, respectively. The reduction in inbreeding was accompanied by an average of A$8.42 (Australian dollars) more profit per mating for a model with additive, dominance, and heterozygosity effects compared with random mating. Mate allocations that benefit from nonadditive genetic effects can improve progeny performance only in the generation where it is being implemented, and the gain from specific combining abilities cannot be accumulated over generations. Continuous updating of genomic predictions and mate allocation programs are required to benefit from nonadditive genetic effects in the long term.  相似文献   

20.
Coefficients for individual and maternal breed composition and the expected contributions of individual and maternal heterosis and breed source of cytoplasm were assigned to 42,554 primiparous Holstein-Friesian, Jersey, and crossbred cows. The individual additive genetic breed effect influenced all milk production traits. Highly significant maternal additive genetic breed effects equivalent to 3% of the mean were identified for milk yield and milk fat percentage. Individual heterosis was highly significant for milk yield and milk fat yield. A primiparous first cross cow produced 6.1% more milk and 7.2% more milk fat than the average of straightbred cows of both breeds. For milk fat yield, the individual heterosis effect was higher than the individual additive genetic breed difference between Jersey and Holstein-Friesian. A small negative maternal heterosis and a small effect of breed source of cytoplasm were estimated for milk fat percentage. Results suggest that individual heterosis is a major genetic effect for milk yield and milk fat yield. This heterosis could be utilized through a stratified breeding scheme in which high genetic merit nucleus herds maintain genetic progress in the two straightbred populations, and commercial dairy herds employ a rotational cross-breeding scheme to take advantage of both the additive genetic progress and nonadditive genetic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号