首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为了探究非晶Ni-P合金镀层对304不锈钢应力腐蚀的影响,通过优化工艺配方制备非晶Ni-P合金镀层,并对其结构和耐蚀性进行了分析。结果表明:非晶Ni-P合金镀层表面平整,P的质量分数为10.72%;非晶Ni-P合金镀层的耐蚀性优于304不锈钢的,接近耐腐蚀材料等级;非晶Ni-P合金镀层的应力腐蚀敏感指数更低,起到较好的机械隔离和电化学保护作用。  相似文献   

2.
对比了Ni-P合金镀层和Ni-Cu-P合金镀层的耐蚀性及硬度。研究了热处理温度及保温时间对两种镀层耐蚀性的影响。结果表明:与Ni-P合金镀层相比,Ni-Cu-P合金镀层表面更加致密,耐蚀性更好;当热处理温度为200~300℃时,Ni-P合金镀层和Ni-Cu-P合金镀层的硬度均随保温时间的延长而增大;当热处理温度为400℃时,Ni-P合金镀层和Ni-Cu-P合金镀层的硬度均随保温时间的延长先增大后减小。  相似文献   

3.
柠檬酸对Ni-P合金化学镀沉积速度和镀层性能的影响   总被引:3,自引:1,他引:3  
研究了柠檬酸浓度对乙酸盐缓冲体系Ni-P合金化学镀沉积速度、镀层含磷量及其耐蚀性与结构的影响,并对镀层在镀态下和经热处理后的耐蚀性与结构进行了比较。结果表明,随柠檬酸浓度的增加,沉积速度先增加后l牵低,而镀层中磷含量则先降低后增加;镀态时高磷合金为非晶态结构且具有较好的耐蚀性,中磷合金则为非晶 微晶结构,耐蚀性较低,而所有镀层经350℃热处理1h后,结构都转变为晶态,且耐蚀性明显提高。  相似文献   

4.
化学镀Ni-P-PTFE层的硫化气氛中耐蚀性的研究   总被引:2,自引:0,他引:2  
吴昊 《电镀与涂饰》1999,18(3):32-36
化学镀Ni-P-PTFE层常用于一些特定的场合.为提高其耐蚀性,使其能应用于特殊的腐蚀环境.采用了以Ni-P合金层为底层,Ni-P-PTFE层为面层的双层组合.研究了镀层在模拟硫化气氛中的耐蚀性及热处理对镀层耐蚀性的影响.结果表明:Ni-P合金层采用此双层组合镀层能满足耐硫化气氛腐蚀的要求.此外,热处理对镀层耐蚀性有不利影响,故不宜对镀层进行热处理.  相似文献   

5.
化学镀Ni-P合金在食品中耐蚀行为研究   总被引:1,自引:0,他引:1  
本文在确定化学镀Ni-P合金工艺条件的基础上,用静态失重法探讨了镀层在苹果汁,酸白菜,西红柿汁,白醋,茶等五种食品中腐蚀速度。用X射线衍射和阳极极化曲线分析了热处理对镀层耐蚀性的影响。结果表明:Ni-P合金在上述几种食品中耐蚀性较好,经预镀的镀层耐蚀性比.未预镀的镀层耐蚀性更好,镀层经热处理后耐蚀性反而下降。  相似文献   

6.
热处理对化学镀Ni-P合金耐蚀性及晶体结构的影响   总被引:4,自引:0,他引:4  
用化学镀方法分别获得不同磷的质量分数的Ni-P合金镀层,并用X射线衍射仪和扫描电子显微镜分别研究镀层结构和表面形貌。对经不同热处理温度下,Ni-P合金镀层的耐蚀性能作了对比研究。结果表明:热处理影响了镀层的耐蚀性,经200℃热处理1 h,可改善镀层的耐蚀性;温度超过300℃,镀层组织结构发生改变,耐蚀性能降低。  相似文献   

7.
对化学镀Ni-P合金镀层进行铬酸盐钝化处理,并研究了钝化温度和钝化时间对化学镀NiP合金镀层耐蚀性的影响。结果表明:钝化处理可以显著提高化学镀Ni-P合金镀层的耐蚀性。经40g/L重铬酸钾钝化的化学镀Ni-P合金镀层的耐蚀性明显优于经5g/L重铬酸钾钝化的化学镀Ni-P合金镀层的耐蚀性。随着钝化温度的升高或钝化时间的延长,化学镀Ni-P合金镀层的耐蚀性增强。  相似文献   

8.
Ni—P非晶镀层的性能及其应用   总被引:4,自引:0,他引:4  
本文作者收集了大量资料,用来详细论述Ni-P非晶镀层的物理性能、化学性能及其应用范围。着重研究了它的耐蚀性能、硬度、耐磨性和微动摩损及微动疲劳性能。指出了影响Ni-P非晶镀层耐蚀性的五种因素,即环境温度,镀层成份、镀液成份、热处理和镀层厚度。对于硬度,既研究了镀层中的磷含量、热处理的温度和时间对硬度的影响。又介绍了电镀Ni-P非晶镀层时对硬度有影响的6个因素,即镀液中磷酸(H_3PO_4)及亚磷酸H_3PO_3的含量,碳酸镍的含量、电流密度、电镀温度、镀层中的磷含量及热处理的温度。最后介绍了英国诺丁汉大学对于微动磨损性能和微动疲劳性能方面的研究成果和Ni-P非晶镀层的应用领域,可供设计人员和电镀工作者参考。  相似文献   

9.
电镀非晶态Ni-P合金的研究进展   总被引:1,自引:0,他引:1  
电镀非晶态Ni-P合金以其无可替代的工艺优势和镀层独特的物理化学性能引起了越来越多研究者的关注。对非晶态Ni-P合金电沉积工艺、电沉积机理、非晶形成机制、热处理性能和耐蚀性能等方面的研究现状进行了综述,并讨论了电沉积非晶态Ni-P合金的应用前景。  相似文献   

10.
崔以刚 《电镀与环保》2020,(1):31-32,33
在机械传动轴用40Cr钢基体上制备了化学镀Ni-P合金镀层,并对化学镀Ni-P合金镀层的厚度、表面粗糙度、结构、表面形貌及耐蚀性进行了研究。结果表明:化学镀Ni-P合金镀层属于立方结构,结晶度较好;化学镀Ni-P合金镀层表面呈现出均匀、致密的颗粒状形貌,厚度约为6.5 pm;化学镀Ni-P合金镀层的自腐蚀电位为一0.305 V,自腐蚀电流密度为36.72 ptA/cm2,耐蚀性较好。  相似文献   

11.
化学镀Ni—P合金在烟草机械上的应用   总被引:1,自引:0,他引:1  
研究了在烟草机械零件上化学镀Ni-P合金的工艺及其镀层的性能,结果表明,热处理温度对镀层的硬度和耐磨性均有较大影响,二者经400℃,1h热处理后达到峰值。镀层在酸、碱,盐介质中的耐蚀性均优于不锈钢。铝合金上之化学镀Ni-P合金层比硬阳极氧化层有较优的性能。  相似文献   

12.
用静态失重法分别测量了Ni-Mo-P三元合金在NaCl、HCl、NaOH、H2SO4溶液中腐蚀速率,并与Ni-P合金比较,结果表明Mo元素存在提高了镀层耐蚀性。另外,还对镀层进行热处理,并通过极化曲线测定,结果表明当热处理温度达到600℃以上时,有利于镀层耐蚀性的提高。  相似文献   

13.
在ZM5镁合金表面制备了化学镀Ni-P合金镀层,并对其微观形貌、成分、相结构及电化学腐蚀行为进行了分析。结果表明:化学镀Ni-P合金镀层的厚度约为25μm,表面均匀、平整,内部致密无缺陷,与基体结合紧密,其结构为非晶态。与ZM5镁合金基体相比,化学镀Ni-P合金镀层的自腐蚀电位正移了1.171 V,自腐蚀电流密度减小了近3个数量级,表现出良好的耐蚀性。化学镀Ni-P合金镀层在阴极极化电位和自腐蚀电位下的阻抗谱均由两个容抗弧半圆组成,表现为均匀腐蚀。而阳极电位下化学镀Ni-P合金镀层的阻抗谱由容抗弧和Warburg阻抗组成,表现为局部腐蚀。化学镀Ni-P合金镀层在自腐蚀电位和阴极极化电位下工作能显著提高耐蚀性,并且在自腐蚀电位下的耐蚀性更好。而化学镀Ni-P合金镀层在阳极极化电位下的耐蚀性较差,不利于镀镍镁合金的长期使用。  相似文献   

14.
化学镀Ni-P合金镀层耐蚀性的研究   总被引:7,自引:0,他引:7  
通过大量试验,研究了化学镀Ni-P合金镀层在H_2S、HCl、Nac1及部分有机酸介质中的耐蚀性。测定结果表明,化学镀Ni-P合金镀层在上述介质中的耐蚀性与镀层中的P含量有很大关系。文中还分析探讨了该镀层的耐蚀机理  相似文献   

15.
化学镀Ni-P合金镀层以其优良的耐蚀性,被广泛用于化工设备和化工管道的防腐。阐述了化学镀Ni-P合金镀层的耐蚀机制,并综述了化学镀Ni-P合金镀层在换热器、冷却器、泵阀等化工设备及化工管道防腐中的应用概况。  相似文献   

16.
在钢铁基体上电镀Zn-Ni合金/Ni-P合金双层镀层,并对其性能进行了研究。结果表明:Zn-Ni合金/Ni-P合金双层镀层兼具Zn-Ni合金的高耐蚀性和Ni-P合金的高耐磨性,与基体的结合力也较好,而且在脆性方面比Zn-Ni合金的好,在耐磨性方面与Ni-P合金的相当。  相似文献   

17.
研究了NaF和KIO3对Q235钢表面电沉积Ni-P合金层沉积速率的影响,并通过浸泡实验考察了Ni-P合金镀层在质量分数分别为3.5%的NaCl,10%的NaOH和5%的HCl等三种溶液中的耐蚀性.结果表明:NaF并没有提高镀层的沉积速率,而加入KIO3则提高了镀层的沉积速率.同时,加入NaF或KIO3后均能明显改善Ni-P合金镀层的耐蚀性.  相似文献   

18.
阐明了孔隙率对Ni-P化学镀层耐蚀性的影响。综述了降低Ni-P化学镀层孔隙率的优化措施,包括多层施镀、钝化封孔、涂覆封孔及热处理等,并探讨了这些措施的防护机制。最后对Ni-P化学镀层的发展方向做了展望。  相似文献   

19.
<正> 一、前言化学镀镍与电镀镍相比,优点是有镀层均匀、针孔少的非晶结构,镀层耐蚀性好。本文介绍了在铝合金基片上化学镀Ni-P的操作条件对膜厚及耐蚀性的影响。  相似文献   

20.
论述了铝合金表面刷镀Ni-P合金的工艺条件,研究了铝合金表面刷镀Ni-P合金的性能,热处理温度对铝合金表面Ni-P合金刷镀层硬度和耐磨性有较大的影响,经400℃热处理后,硬度和耐磨性达到最大值,在铝合金零部件上刷镀Ni-P合金具有刷镀层硬度高,耐磨性好,解决了铝及铝合金表面硬度低,易磨损等问题,具有广泛的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号