首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
为研究微合金元素Nb对高碳合金钢动态再结晶行为的影响,利用Gleeble-3500热模拟试验机进行单道次压缩试验,测定了高碳合金钢在变形温度为950~1150 ℃、应变速率为0.01~5 s-1的流变应力曲线,利用Zeiss光学显微镜观察了奥氏体动态再结晶晶粒形态,通过回归计算获得了相应的再结晶激活能,建立了热变形方程。结果表明:较高的变形温度和较低的应变速率有利于含铌高碳合金钢发生动态再结晶;含铌高碳合金钢的动态再结晶晶粒尺寸随着变形温度的升高而增大,当变形温度为1050 ℃时,含铌高碳合金钢已大量出现动态再结晶晶粒;0.040%铌加入到高碳合金钢中,在应变速率为0.1 s-1,变形温度为1150 ℃时推迟了钢的动态再结晶开始时间约2.23 s,动态再结晶形变激活能增加了52.26 kJ/mol。  相似文献   

2.
13Cr超级马氏体不锈钢热压缩变形行为与组织演变   总被引:1,自引:0,他引:1       下载免费PDF全文
通过Gleeble-3500热模拟试验机对13Cr超级马氏体不锈钢进行单道次压缩变形试验,系统研究变形温度在950~1150 ℃、应变速率为0.001~10 s-1条件下的热变形行为。利用双曲正弦模型建立了13Cr超级马氏体不锈钢的流变应力本构方程,求得试验钢的热变形激活能为412 kJ/mol,并基于动态材料模型(DMM)理论绘制了材料的热加工图,得出材料的最佳热变形工艺参数窗口为:变形温度1032~1072 ℃,应变速率0.039~0.087 s-1。组织演变结果表明,试验钢在高变形温度和低应变速率的条件下,容易发生动态再结晶。当应变速率一定时(0.01 s-1),变形温度从950 ℃升到1050 ℃,动态再结晶的体积分数从18.7%升高到60.1%,组织的再结晶程度提高,晶粒均匀细小;当变形温度一定时(1050 ℃),随着应变速率的降低,动态再结晶的晶粒长大粗化。  相似文献   

3.
利用Gleeble-3800热模拟机研究Incoloy901高温合金在变形温度950~1150 ℃,应变速率0.005~1 s-1,真应变0.6下的热变形行为。结果表明:变形温度大于1000 ℃,应变速率大于0.01 s-1时,Incoloy901合金真应力-应变曲线呈现动态再结晶特征。根据应力-应变曲线构建Incoloy901合金的本构方程与热加工图,得出形变激活能Q=439.401 kJ/mol,最佳热加工工艺为:变形温度1050~1150 ℃,应变速率0.005~0.1 s-1,在此工艺范围内合金的高温变形功率耗散系数η较高,可达37%,能获得较好的动态再结晶组织。  相似文献   

4.
30CrNi3MoV钢的热变形行为及热加工图   总被引:1,自引:0,他引:1       下载免费PDF全文
储滔  沈慧  斯庭智 《金属热处理》2020,45(10):24-30
采用Gleeble-3500热模拟试验机对30CrNi3MoV钢进行单向热压缩试验,研究了其在变形温度950~1150 ℃、应变速率0.01~10 s-1的热变形行为,构建了应变补偿型流变应力本构方程,并绘制出该钢的热加工图。结果表明,30CrNi3MoV钢真应力-真应变曲线有3种不同特征:高温小应变速率时,表现为典型的动态再结晶过程;低温小应变速率时,曲线为动态回复特征;应变速率较大时,应力随应变的增大而增大,无明显的峰值应力。采用5次多项式拟合构建的应变耦合流变应力本构方程具有高的精确度,采用该方程获得的预测值与试验值的平均相对误差为3.2%,相关性系数R值为0.993。从热加工图中得到试验钢最佳的热加工工艺参数范围是:变形温度为1020~1150 ℃、应变速率为0.03~0.35 s-1。  相似文献   

5.
为了探究0.30C-Cr-W渗氮轴承钢的最佳动态再结晶条件和热变形机理,利用Gleeble3800热模拟试验机对试验钢进行了等温热压缩模拟试验,试验变形温度为750~1050 ℃,应变速率0.01~10 s-1,变形量60%。结果表明,峰值应力随变形温度的降低和应变速率的升高而增大,在应变速率为0.01∼0.1 s-1,变形温度为950~1050 ℃时,发生明显动态再结晶;具有双曲正弦函数型的本构方程能较好地描述0.30C-Cr-W渗氮轴承钢的流变行为;0.30C-Cr-W渗氮轴承钢的形变激活能为442.022 kJ/mol。基于动态材料模型和流变应力数据建立了热加工图。通过热加工图及微观组织的观察确定了变形温度950∼1050 ℃,应变速率0.01∼0.15 s-1为最佳热变形条件;变形温度750∼950 ℃,应变速率1.2∼10 s-1为流变失稳区。  相似文献   

6.
王帅  赵阳  邵国华  陈礼清 《轧钢》2021,38(6):42-47
利用MMS-200热模拟试验机对一种中碳高硅弹簧钢进行了单道次热压缩试验,研究了该钢在变形温度为900~1 100 ℃及应变速率为0.1~10 s-1条件下的热变形行为,建立了应变补偿的Arrhenius流变应力预测模型。结果表明,应变速率和变形温度对该弹簧钢的奥氏体动态再结晶过程有显著影响。当变形速率为0.1、5、10 s-1时,在所有变形温度下均发生奥氏体动态再结晶;当变形速率为1 s-1且变形温度超过950 ℃时,奥氏体发生动态再结晶,其热变形激活能为445.5 kJ/mol。通过对真应力的预测值与试验值的对比,得出应变补偿Arrhenius模型具有准确性和预测性,其相关系数为0.976,平均相对误差为4.73%。  相似文献   

7.
采用Thermecmastor-Z热模拟试验机研究了试验钢在800~1150 ℃、应变速率0.01~10 s-1的热压缩变形行为,并观察变形后显微组织。基于试验数据分析,确定了试验钢在奥氏体区的热变形方程,建立试验钢在0.8真应变下的热加工图。结果表明:试验钢的流变应力和峰值应变随变形温度的升高而减小;试验钢在奥氏体区的热变形激活能为385.91 kJ/mol。根据试验钢功率耗散及流变失稳判据确定最佳热加工工艺参数为热变形温度范围1050~1150 ℃和应变速率0.01~0.1 s-1。在该范围内,试验钢发生完全动态再结晶,功率耗散系数为17%~32%。  相似文献   

8.
通过Gleeble-3500热机械模拟机研究了Fe-0.1C-5Mn中锰钢在950~1 150℃变形温度、0.001~1 s-1应变速率下的高温变形行为。根据单道次热压缩的真应力-真应变曲线,分析了变形条件对流变应力的影响,发现高温和低应变速率有利于动态再结晶的发生。引入Zener-Hollomon参数,建立本构方程,得到钢的热变形激活能为256.317 kJ/mol。通过对试验数据的拟合,建立了中锰钢动态回复和动态再结晶的分段流变应力模型,结果表明:模型预测值与试验值吻合较好,证明了所建模型的可靠性。  相似文献   

9.
采用Gleeble-3800热模拟试验机对22Cr-32Fe-40Ni合金在变形温度为950~1150℃、应变速率为0.1~10 s-1范围内进行了热模拟压缩试验,对材料在热变形过程中的流变特性和组织演变规律进行了研究。结果表明,在变形温度高于1000℃或应变速率小于1 s-1时,材料的硬化效应和软化效应达到动态平衡;在变形温度低于1000℃或应变速率为10 s-1时,材料以动态再结晶为主的软化效应占主导作用。通过应变硬化率曲线确定了动态再结晶临界条件,基于温度补偿Arrhenius方程建立了22Cr-32Fe-40Ni合金的热变形本构方程,热变形激活能Q为438.339 kJ·mol-1。22Cr-32Fe-40Ni合金适宜的热加工区间为变形温度1040~1150℃,应变速率0.1~0.47 s-1。  相似文献   

10.
采用Gleeble 3800热模拟试验机,对高铁刹车盘用CrMoV钢在应变速率0.01~1 s~(-1)和变形温度850~1150℃下进行热压缩变形试验;分析了其流变曲线;并基于流变数据建立了其热变形方程和热加工图;用光学显微镜观察了其不同条件下的显微组织。结果表明,在高温、低应变速率条件下CrMoV钢为动态再结晶型,如1150℃、0.01 s~(-1),在低温、高应变速率条件下CrMoV钢为动态回复型,如950℃、1 s~(-1);CrMoV钢的热变形激活能为406.7781 kJ/mol;建议最佳的工艺参数范围为变形温度1080~1140℃,应变速率0.01~0.1 s~(-1)。  相似文献   

11.
为了预测含铝节镍型奥氏体耐热钢(AFA钢)的热变形行为,利用Gleeble-3500热力模拟试验机对AFA钢进行了温度950~1150℃、应变速率0.01~10 s-1、真应变为0.51~1.2的高温热压缩试验,构建了本构方程,并建立了热加工图。结果表明,在同一应变速率下,随着变形温度的升高,AFA钢的流变应力逐渐降低,在同一变形温度下,随着应变速率的增加,流变应力随之增加。在真应变为0.69(变形量为50%)下,预测应力与实际应力的线性相关系数R2为0.998 53,随着应变的增加,材料的失稳区域先减小后增大,集中于低温区;高效率区域变大,且高效率区域集中于变形温度为1100~1150℃、应变速率为0.01~0.1 s-1之间,说明AFA钢适合在高温低应变速率的情况下进行热加工。  相似文献   

12.
采用Gleeble-2000D热模拟试验机对F40MnVS非调质钢进行了热模拟压缩试验,分析了该钢在850~1 050 ℃和0.01~10 s-1条件下的热模拟压缩变形特征。同时,根据Prasad提出的动态材料模型(DMM)并结合有限元模拟,建立了适用于F40MnVS非调质钢φ156 mm规格棒材的热加工图。研究结果表明,在低应变速率(0.01~0.1 s-1)下,材料呈现典型的动态再结晶特征;在高应变速率(1~10 s-1)下,材料发生动态回复;由所建立的热加工图确定了F40MnVS非调质钢的最佳的热变形工艺,即变形温度900~950 ℃,应变速率0.03~0.1 s-1。热加工图为F40MnVS非调质钢大规格棒材的加工性能分析和工艺优化提供了参考依据。  相似文献   

13.
为了探究真空感应+真空自耗(VIM+VAR)和电炉+精炼+真空自耗(EAF+LF+VAR)两种工艺冶炼A286高温合金的热变形行为,利用Gleeble-3800热模拟试验机在温度950~1150 ℃和应变速率0.01~10 s-1范围内进行热压缩试验。基于摩擦和绝热加热修正后的真应力-真应变曲线和应变硬化率曲线建立了A286合金的Arrhenius本构方程,确定了VIM+VAR合金和EAF+LF+VAR合金的热激活能分别为358.15和372.54 kJ·mol-1。利用临界应变和动态再结晶体积分数50%应变引入动态再结晶速度参数kv,建立新的动态再结晶模型。采用Prasad 准则绘制两种钢在应变0.2、0.5和0.9下的热加工图,并结合组织分析,确定VIM+VAR合金的最佳热加工工艺条件为1050~1100 ℃,0.01~1 s-1和1100~1150 ℃,0.1~10 s-1;EAF+LF+VAR合金的最佳热加工工艺条件为1050~1100 ℃,0.01~1 s-1和1100~1150 ℃,0.1~3 s-1,得出VIM+VAR合金的热加工区间较宽,其热加工性能优于EAF+LF+VAR合金。  相似文献   

14.
利用Gleeble-3800热模拟试验机得到17Cr2Ni2MoVNb和20Cr2Ni4A齿轮钢在1000~1150 ℃、0.01~10 s-1的流变应力曲线,构建了两种钢的动态再结晶Avrami动力学模型和热加工图。结果表明,两种钢在高变形温度、低应变速率下易发生动态再结晶。17Cr2Ni2MoVNb钢中较高的Nb和Mo含量对动态再结晶的抑制作用大于20Cr2Ni4A钢中的高Ni含量的影响,导致在相同的热变形条件下17Cr2Ni2MoVNb钢的动态再结晶体积分数小于20Cr2Ni4A钢。17Cr2Ni2MoVNb钢的最佳热加工工艺参数为:温度为1050~1150 ℃、应变速率为0.1~0.6 s-1;20Cr2Ni4A钢的最佳加工参数为:温度为1100~1150 ℃、应变速率为3.3~5.5 s-1。  相似文献   

15.
通过热模拟压缩试验研究了50SiMnVB合金钢在应变速率为0.01~10 s-1、温度为800~1000℃条件下的高温热变形行为。利用金相显微镜观察了合金压缩变形后的显微组织,结果表明:50SiMnVB合金钢在高温热变形过程中发生了典型的动态回复和动态再结晶行为,其中,动态再结晶以连续再结晶的形式进行,且应变速率越小、温度越高,越容易发生动态再结晶。根据试验结果,基于应变硬化率θ与流动应力σ之间的关系,确定了50SiMnVB合金钢高温热变形动态再结晶的临界应变;采用线性回归拟合建立了包括临界应变方程、峰值应变方程以及体积分数方程的50SiMnVB合金钢的高温变形动态再结晶模型,经对比分析发现,该模型能较好地预测合金钢高温热变形动态再结晶的体积分数;建立了50SiMnVB合金钢高温热变形动态再结晶晶粒尺寸模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号