首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Borate-based bioactive glass scaffolds with a microstructure similar to that of human trabecular bone were prepared using a polymer foam replication method, and evaluated in vitro for potential bone repair applications. The scaffolds (porosity = 72 ± 3%; pore size = 250–500 μm) had a compressive strength of 6.4 ± 1.0 MPa. The bioactivity of the scaffolds was confirmed by the formation of a hydroxyapatite (HA) layer on the surface of the glass within 7 days in 0.02 M K2HPO4 solution at 37 °C. The biocompatibility of the scaffolds was assessed from the response of cells to extracts of the dissolution products of the scaffolds, using assays of MTT hydrolysis, cell viability, and alkaline phosphatase activity. For boron concentrations below a threshold value (0.65 mM), extracts of the glass dissolution products supported the proliferation of bone marrow stromal cells, as well as the proliferation and function of murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed attachment and continuous increase in the density of MLO-A5 cells cultured on the surface of the glass scaffolds. The results indicate that borate-based bioactive glass could be a potential scaffold material for bone tissue engineering provided that the boron released from the glass could be controlled below a threshold value.  相似文献   

2.
Bioactive glass has been investigated for variety of tissue engineering applications. In this study, fabrication, in vitro and in vivo evaluation of bioactive glass nanocomposite scaffold were investigated. The nanocomposite scaffolds with compositions based on gelatin and bioactive glass nanoparticles were prepared. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray powder diffraction analyses. The in vitro characteristics of bioactive glass scaffold as well as the in vivo bone formation capacity of the bioactive glass scaffold in rabbit ulnar model were investigated. The bioactive glass scaffold showed no cytotoxicity effects in vitro. The nanocomposite scaffold made from gelatin and bioactive glass nanoparticles could be deliberated as an extremely bioactive and prospective bone tissue engineering implant. Bioactive glass scaffolds were capable of guiding bone formation in a rabbit ulnar critical-sized-defect model. Radiographic evaluation indicated that successful bridging of the critical-sized defect on the sides both next to and away from the radius took place using bioactive glass scaffolds. X-ray analysis also proposed that bioactive glass scaffolds supported normal bone formation via intramembranous formation  相似文献   

3.
The development of the new technologies of bone tissue engineering requires the production of bioactive and biodegradable macroporous scaffolds. Hydroxyapatite (HA) ceramics are useful bone substitutes, but they degrade minimally. Tricalcium phosphates also show poor ability of Ca-P formation both in-vitro and in-vivo, although they are degradable. The present study introduces a biodegradable, bioactive, and macroporous scaffold with suitable mechanical properties. The prepared hydroxyapatite scaffold was coated with a nanocrystalline bioactive glass layer to be subsequently sintered at different temperatures. The bioactivity and degradability of the coated scaffolds were investigated by standard procedures. The ability to induce Ca-P formation in SBF (simulated body fluid) was also investigated semi-quantitatively. BS1 scaffolds (scaffolds sintered at 800 °C with a holding time of 2 h) showed remarkable bioactivity and degradability simultaneously. Formation of a nanocrystalline phase (Si2PO7) during the sintering considerably decreased the capability of BS1 scaffolds for Ca-P formation and the rate of degradation but enhanced their mechanical properties. The BS1 scaffolds showed not only significant bioactivity but also good degradability and suitable mechanical property.  相似文献   

4.
Bioactive glass scaffolds have been produced, which meet many of the criteria for an ideal scaffold for bone tissue engineering applications, by foaming sol-gel derived bioactive glasses. The scaffolds have a hierarchical pore structure that is very similar to that of cancellous bone. The degradation products of bioactive glasses have been found to stimulate the genes in osteoblasts. This effect has been found to be dose dependent. The addition of silver ions to bioactive glasses has also been investigated to produce glasses with bactericidal properties. This paper discusses how changes in the hierarchical pore structure affect the dissolution of the glass and therefore its bioactivity and rate of ion delivery and demonstrates that silver containing bioactive glass foam scaffolds can be synthesised. It was found that the rate of release of Si and Ca ions was more rapid for pore structures with a larger modal pore diameter, although the effect of tailoring the textural porosity on the rate of ion release was more pronounced. Bioactive glass scaffolds, containing 2 mol% silver, released silver ions at a rate that was similar to that which has previously been found to be bactericidal but not high enough to be cytotoxic to bone cells.  相似文献   

5.
X-ray microtomography (μCT) is a popular tool for imaging scaffolds designed for tissue engineering applications. The ability of synchrotron μCT to monitor tissue response and changes in a bioactive glass scaffold ex vivo were assessed. It was possible to observe the morphology of the bone; soft tissue ingrowth and the calcium distribution within the scaffold. A second aim was to use two newly developed compression rigs, one designed for use inside a laboratory based μCT machine for continual monitoring of the pore structure and crack formation and another designed for use in the synchrotron facility. Both rigs allowed imaging of the failure mechanism while obtaining stress–strain data. Failure mechanisms of the bioactive glass scaffolds were found not to follow classical predictions for the failure of brittle foams. Compression strengths were found to be 4.5–6 MPa while maintaining an interconnected pore network suitable for tissue engineering applications.  相似文献   

6.
The objective of this work was to evaluate borate bioactive glass scaffolds (with a composition in the system Na2O–K2O–MgO–CaO–B2O3–P2O5) as devices for the release of the drug Vancomycin in the treatment of bone infection. A solution of ammonium phosphate, with or without dissolved Vancomycin, was used to bond borate glass particles into the shape of pellets. The in vitro degradation of the pellets and their conversion to a hydroxyapatite-type material in a simulated body fluid (SBF) were investigated using weight loss measurements, chemical analysis, X-ray diffraction, and scanning electron microscopy. The results showed that greater than 90% of the glass in the scaffolds degraded within 1 week, to form poorly crystallized hydroxyapatite (HA). Pellets loaded with Vancomycin provided controlled release of the drug over 4 days. Vancomycin-loaded scaffolds were implanted into the right tibiae of rabbits infected with osteomyelitis. The efficacy of the treatment was assessed using microbiological examination and histology. The HA formed in the scaffolds in vivo, resulting from the conversion of the glass, served as structure to support the growth of new bone and blood vessels. The results in this work indicate that bioactive borate glass could provide a promising biodegradable and bioactive material for use as both a drug delivery system and a scaffold for bone repair.  相似文献   

7.
Here we produced macroporous and nanofibrous scaffolds with bioactive nanocomposite composition, poly(lactic acid) (PLA) incorporating bioactive glass nanoparticles (BGnp) up to 30 wt%, targeting bone regeneration. In particular, the nanofibrous structure in the scaffolds was generated by using a bicyclic monoterpene, camphene (C10H16), through a phase-separation process with PLA-BGnp phase in chloroform/1,4-dioxane co-solvent. Furthermore, macropores were produced by the impregnation of salt particles and their subsequent leaching out, followed by freezing and lyophilization processes. The produced PLA-BGnp scaffolds presented highly porous and nanofibrous structure with porosities of 90–95% and pore sizes of over hundreds of micrometers. BGnp with sizes of ∼90 nm were also evenly impregnated within the PLA matrix, featuring a nanocomposite structure. The nanofibrous scaffolds exhibited enhanced hydrophilicity and more rapid hydrolytic degradation as the incorporated BGnp content increased. The bone-bioactivity of the scaffolds was substantially improved with the incorporation of BGnp, exhibiting rapid formation of apatite throughout the scaffolds in a simulated body fluid. The developed macroporous and nanofibrous scaffolds with PLA-BGnp bioactive composition are considered as a novel 3D matrix potentially useful for bone tissue engineering.  相似文献   

8.
The cortical bone response towards poly(lactide-co-glycolide) (70/30) (PLGA) (70/30)/apatite complex scaffolds with different levels of crystallinity was investigated. Apatite with different levels of crystallinity, Ca-deficient hydroxyapatite (CDHA), which has a low crystallinity, and a mixture of carbonated hydroxyapatite (CHA) and CDHA, which has a higher crystallinity, were prepared from an aqueous mixture of Ca-EDTA complex, H2O2, H3PO4, and NH4OH. Two porous PLGA(70/30)/apatite composite scaffolds, composite scaffold A (containing low crystallinity CDHA) and composite scaffold B (containing the higher crystallinity CHA/CDHA mixture), were prepared. Afterwards, pure porous PLGA and the two composite scaffolds were implanted into the cortical bone of rabbit tibiae for 12 weeks. High-resolution microfocus X-ray computed tomography and histological examinations revealed a better bone response for composite scaffold A compared with PLGA and composite scaffold B. For composite scaffold A, the original bone defect was almost filled with new bone. Quantitative analysis revealed that composite scaffold A produced a significantly greater amount of new bone. The present study demonstrated that the level of apatite crystallinity influences bone response. A PLGA/apatite porous composite with a low level of apatite crystallinity shows promise as a bone substitute or scaffold material for bone tissue engineering.  相似文献   

9.
The development of bioactive scaffolds with a designed pore configuration is of particular importance in bone tissue engineering. In this study, bone scaffolds with a controlled pore structure and a bioactive composition were produced using a robotic dispensing technique. A poly(ε-caprolactone) (PCL) and hydroxyapatite (HA) composite solution (PCL/HA = 1) was constructed into a 3-dimensional (3D) porous scaffold by fiber deposition and layer-by-layer assembly using a computer-aided robocasting machine. The in vitro tissue cell compatibility was examined using rat bone marrow stromal cells (rBMSCs). The adhesion and growth of cells onto the robotic dispensed scaffolds were observed to be limited by applying the conventional cell seeding technique. However, the initially adhered cells were viable on the scaffold surface. The alkaline phosphatase activity of the cells was significantly higher on the HA–PCL than on the PCL and control culture dish, suggesting that the robotic dispensed HA–PCL scaffold should stimulate the osteogenic differentiation of rBMSCs. Moreover, the expression of a series of bone-associated genes, including alkaline phosphatase and collagen type I, was highly up-regulated on the HA–PCL scaffold as compared to that on the pure PCL scaffold. Overall, the robotic dispensed HA–PCL is considered to find potential use as a bioactive 3D scaffold for bone tissue engineering. Seok-Jung Hong and Ishik Jeong contributed equally.  相似文献   

10.
In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO2, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry.  相似文献   

11.
Designing tissue engineering scaffolds with the required mechanical properties and favourable microstructure to promote cell attachment, growth and new tissue formation is one of the key challenges facing the tissue engineering field. An important class of scaffolds for bone tissue engineering is based on bioceramics and bioactive glasses, including: hydroxyapatite, bioactive glass (e.g. Bioglass®), alumina, TiO2 and calcium phosphates. The primary disadvantage of these materials is their low resistance to fracture under loads and their high brittleness. These drawbacks are exacerbated by the fact that optimal scaffolds must be highly porous (>90% porosity). Several approaches are being explored to enhance the structural integrity, fracture strength and toughness of bioceramic scaffolds. This paper reviews recent proposed approaches based on developing bioactive composites by introducing polymer coatings or by forming interpenetrating polymer-bioceramic microstructures which mimic the composite structure of bone. Several systems are analysed and scaffold fabrication processes, microstructure development and mechanical properties are discussed. The analysis of the literature suggests that the scaffolds reviewed here might represent the optimal solution and be the scaffolds of choice for bone regeneration strategies.  相似文献   

12.
The repair and regeneration of large bone defects resulting from disease or trauma remains a significant clinical challenge. Bioactive glass has appealing characteristics as a scaffold material for bone tissue engineering, but the application of glass scaffolds for the repair of load-bearing bone defects is often limited by their low mechanical strength and fracture toughness. This paper provides an overview of recent developments in the fabrication and mechanical properties of bioactive glass scaffolds. The review reveals the fact that mechanical strength is not a real limiting factor in the use of bioactive glass scaffolds for bone repair, an observation not often recognized by most researchers and clinicians. Scaffolds with compressive strengths comparable to those of trabecular and cortical bones have been produced by a variety of methods. The current limitations of bioactive glass scaffolds include their low fracture toughness (low resistance to fracture) and limited mechanical reliability, which have so far received little attention. Future research directions should include the development of strong and tough bioactive glass scaffolds, and their evaluation in unloaded and load-bearing bone defects in animal models.  相似文献   

13.
A solid freeform fabrication technique, freeze extrusion fabrication (FEF), was investigated for the creation of three-dimensional bioactive glass (13–93) scaffolds with pre-designed porosity and pore architecture. An aqueous mixture of bioactive glass particles and polymeric additives with a paste-like consistency was extruded through a narrow nozzle, and deposited layer-by-layer in a cold environment according to a computer-aided design (CAD) file. Following sublimation of the ice in a freeze dryer, the construct was heated according to a controlled schedule to burn out the polymeric additives (below ~500°C), and to densify the glass phase at higher temperature (1 h at 700°C). The sintered scaffolds had a grid-like microstructure of interconnected pores, with a porosity of ~50%, pore width of ~300 μm, and dense glass filaments (struts) with a diameter or width of ~300 μm. The scaffolds showed an elastic response during mechanical testing in compression, with an average compressive strength of 140 MPa and an elastic modulus of 5–6 GPa, comparable to the values for human cortical bone. These bioactive glass scaffolds created by the FEF method could have potential application in the repair of load-bearing bones.  相似文献   

14.
Scaffolds fabricated by current methods often lack the combination of high strength and high porosity for skeletal substitution of load-bearing bones. In this work, freeze extrusion fabrication (FEF), a solid freeform fabrication technique, was investigated for the creation of porous and strong bioactive glass (13–93) scaffolds for potential applications in the repair of loaded bone. The process parameters for forming three-dimensional (3D) scaffolds with a pre-designed, grid-like microstructure by FEF were determined. Following thermal treatment of the as-formed constructs at temperatures up to 700 °C, scaffolds consisting of dense glass struts and interconnecting pores (porosity  50%; pore width  300 μm) were obtained. These scaffolds showed an elastic mechanical response in compression, with a compressive strength of 140 ± 70 MPa and an elastic modulus of 5.5 ± 0.5 GPa, comparable to the values for human cortical bone. The scaffolds supported the proliferation of osteogenic cells in vitro, showing their biocompatibility. These results indicate that 13–93 bioactive glass scaffolds created by the FEF method could have potential application in the repair and regeneration of load-bearing bones.  相似文献   

15.
Integrating a biomimetic extracellular matrix to improve the microenvironment of 3D printing scaffolds is an emerging strategy for bone substitute design. Here, a “soft–hard” bone implant (BM-g-DPCL) consisting of a bioactive matrix chemically integrated on a polydopamine (PDA)-coated porous gradient scaffold by polyphenol groups is constructed. The PDA-coated “hard” scaffolds promoted Ca2+ chelation and mineral deposition; the “soft” bioactive matrix is beneficial to the migration, proliferation, and osteogenic differentiation of stem cells in vitro, accelerated endogenous stem cell recruitment, and initiated rapid angiogenesis in vivo. The results of the rabbit cranial defect model (Φ = 10 mm) confirmed that BM-g-DPCL promoted the integration between bone tissue and implant and induced the deposition of bone matrix. Proteomics confirmed that cytokine adhesion, biomineralization, rapid vascularization, and extracellular matrix formation are major factors that accelerate bone defect healing. This strategy of highly chemically bonded soft–hard components guided the construction of the bioactive regenerative scaffold.  相似文献   

16.
Nano biocomposite scaffolds of non-stoichiometric apatite (ns-AP) and poly(ε-caprolactone) (PCL) were prepared by a prototyping controlled process (PCP). The results show that the composite scaffolds with 40 wt% ns-AP contained open and well interconnected pores with a size of 400–500 μm, and exhibited a maximum porosity of 76%. The ns-AP particles were not completely embedded in PCL matrix while exposed on the composite surface, which might be useful for cell attachment and growth. Proliferation of MG63 cells was significantly better on the composite scaffolds with porosity of 76% than that those with porosity of 53%, indicating that the scaffolds with high porosity facilitated cell growth, and could promote cell proliferation. The composite scaffolds were implanted into rabbit thighbone defects to investigate the in vivo biocompatibility and osteogenesis. Radiological and histological examination confirmed that the new bony tissue had grown easily into the entire composite scaffold. The results suggest that the well-interconnected pores in the scaffolds might encourage cell proliferation, and migration to stimulate cell functions, thus enhancing bone formation in the scaffolds. This study shows that bioactive and biocompatible ns-AP/PCL composite scaffolds have potential applications in bone tissue engineering.  相似文献   

17.
Highly porous Ti scaffolds with a bioactive microporous hydroxyapatite (HA)/TiO2 hybrid coating layer were fabricated using the sponge replication process and micro-arc oxidation (MAO) treatment to produce the porous Ti scaffold and hybrid coating layer, respectively. In particular, the morphology and chemical composition of the hybrid coating layer were controlled by carrying out the MAO treatment in electrolyte solutions containing various concentrations of HA, ranging from 0 to 30 wt.%. The fabricated sample showed high porosity of approximately 70 vol.% with interconnected pores and reasonably high compressive strength of 18 ± 0.3 MPa. Furthermore, the surfaces could be coated successfully with a bioactive microporous HA/TiO2 hybrid layer. The amount of HA particles in the hybrid coating layer increased with increasing HA content in the electrolyte solution, while preserving the microporous morphology. This hybrid coating improved the osteoblastic activity of the porous Ti scaffolds significantly.  相似文献   

18.
Developing materials combining the advantages of synthetic polymers and bioactive glass nanoparticles can provide an efficient bone engineering scaffold. In this study, sol–gel bioactive glass (SG) nanoparticles were synthesized by quick alkali-mediation; sol–gel derived bioactive glass/poly(l-lactide) nanocomposite scaffolds were then developed. The influence of the glass content on the porosity of nanocomposite scaffolds was evaluated by SEM. The results showed that the neat polymer scaffold (PLA) has a highly interconnected porous structure with a maximum pore size of about 250 μm. For the composite scaffold containing 25 wt.% glass (SGP25), the decrease in the maximum pore size, (to about 200 μm) was not significant while for the SGP50 composite scaffold containing 50 wt.% glass it was a significant decrease (to about 100 μm). The apparent porosity of the scaffolds was 56.56% ± 7.15, 54.14% ± 3.84, and 53.11% ± 3.99 for PLA, SGP25, and, SGP50 respectively. FT-IR, TGA, and XRD results revealed some interaction of the glass filler with the polymeric matrix in the scaffolds. The degradation study showed that, by increasing the glass content in the scaffolds, the water absorption decreased, the weight loss increased, and the cumulative ion concentrations released from them also increased. This indicates the possibility of modulating the degradation rate by varying the glass/polymer ratio. At the end of the incubation period, the weight losses were around 5.44% ± 0.96, 32.50% ± 2.73, and 41.47% ± 3.02 for the PLA, SGP25, and SGP50, respectively. Moreover, the water uptake reached 119.65% ± 18.88 and 93.39% ± 13.01 for SGP25 and SGP50, respectively. The addition of the SG to the scaffolds was found to enhance their in vitro bioactivity. Therefore, these nanocomposite scaffolds have a potential to be applied in bone engineering. All data are expressed as mean ± standard deviation (n = 3).  相似文献   

19.
A novel three‐dimensional (3D) titanium (Ti)‐doping meso‐macroporous bioactive glasses (BGs)/poly(methyl methacrylate) (PMMA) composite was synthesised using PMMA and EO20 PO70 EO20 (P123) as the macroporous and mesoporous templates, respectively. Unlike the usual calcination method, the acid steam technique was used to improve the polycondensation of Ti‐BGs, and then PMMA was partially extracted via chloroform to induce the macroporous structure. Simultaneously, the residual PMMA which remained in the wall enhanced the compressive strength to 2.4 MPa (0.3 MPa for pure BGs). It is a simple and green method to prepare the macro‐mesoporous Ti‐BGs/PMMA. The materials showed the 3D interconnected hierarchical structure (250 and 3.4 nm), making the fast inducing‐hydroxyapatite growth and the controlled drug release. Besides mentioned above, the good antimicrobial property and biocompatible of the scaffold also ensure it is further of clinical use. Herein, the fabricated materials are expected to have potential application on bone tissue regeneration.Inspec keywords: titanium, bone, tissue engineering, glass, materials preparation, biomedical materials, polymers, porous materials, drug delivery systems, nanomedicineOther keywords: poly(methyl methacrylate), PMMA preparation, 3D titanium‐bioactive glass scaffold, bone tissue engineering, titanium‐doping mesomacroporous bioactive glass, bioactive glass‐PMMA composite, macroporous template, mesoporous template, calcination method, acid steam technique, titanium‐bioactive glass polycondensation, macroporous structure, green method, macromesoporous titanium‐bioactive glass‐PMMA, 3D interconnected hierarchical structure, fast inducing‐hydroxyapatite growth, controlled drug release, bone tissue regeneration, Ti  相似文献   

20.
Three-dimensional macroporous scaffolds with the pore size of 200-500 mum were fabricated by replication method using bioactive borosilicate glass from Na(2)O-K(2)O-MgO-CaO-SiO(2)-P(2)O(5)-B(2)O(3) system. The effects of the strength of the strut in reticulated scaffold, as well as the geometrical parameter of the scaffold on the strength of reticulated scaffold were investigated. Scanning electron microscope (SEM) and X-ray diffraction (XRD) results show that the solidified glass struts in the reticulated scaffold could be obtained through a sufficient vicious flow of glass, during the fabrication. By increasing the solid content in slurries, from which the scaffold was made, the load-bearing units of the reticulated scaffold switch from struts to the walls between the pores, and the compressive strength dramatically climbs higher than the theoretical strength calculated by Gibson model. In particular, the compressive strength of the reticulated scaffold, as high as approximately 10 MPa with the porosity of approximately 70%, is close to the reported compressive values of human cancellous bone. This indicates the bioactive borosilicate glass-based scaffold is a promising candidate for bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号