首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, nucleate boiling heat transfer coefficients (HTCs) of HCFC22, HFC134a, HFC125, HFC32 were measured on a low fin, Turbo-B, and Thermoexcel-E tubes. All data were taken at the liquid pool temperature of 7 °C on horizontal tubes of 152 mm length and 18.6–18.8 mm outside diameter at heat fluxes of 10–80 kW m−2 with an interval of 10 kW m−2 in the decreasing order of heat flux. For a plain and low fin tubes, refrigerants with higher vapor pressures showed higher nucleate boiling HTCs consistently. This was due to the fact that the wall superheat required to activate given size cavities became smaller as pressure increased. For Turbo-B and Thermoexcel-E tubes, HFC125 showed a peculiar behavior exhibiting much reduced HTCs due to its high reduced pressure. The heat transfer enhancement ratios of the low fin, Turbo-B, and Thermoexcel-E tubes were 1.09–1.68, 1.77–5.41, 1.64–8.77 respectively in the range of heat fluxes tested.  相似文献   

2.
This paper presents the experimental heat transfer coefficients and pressure drop measured during refrigerant R134a vaporisation inside a small brazed plate heat exchanger (BPHE): the effects of heat flux, refrigerant mass flux, saturation temperature and outlet conditions are investigated. The BPHE tested consists of 10 plates, 72 mm in width and 310 mm in length, which present a macro-scale herringbone corrugation with an inclination angle of 65° and corrugation amplitude of 2 mm.The experimental results are reported in terms of refrigerant side heat transfer coefficients and frictional pressure drop. The heat transfer coefficients show great sensitivity both to heat flux and outlet conditions and weak sensitivity to saturation temperature. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow.The experimental heat transfer coefficients are also compared with two well-known correlations for nucleate pool boiling and a correlation for frictional pressure drop is proposed.  相似文献   

3.
Experiments were performed on the convective boiling heat transfer in horizontal minichannels with CO2. The test section is made of stainless steel tubes with inner diameters of 1.5 and 3.0 mm and with lengths of 2000 and 3000 mm, respectively, and it is uniformly heated by applying an electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 20–40 kW m−2, a mass flux range of 200–600 kg m−2 s−1, saturation temperatures of 10, 0, −5, and −10 °C and quality ranges of up to 1.0. Nucleate boiling heat transfer contribution was predominant, especially at low quality region. The reduction of heat transfer coefficient occurred at a lower vapor quality with a rise of heat flux, mass flux and saturation temperature, and with a smaller inner tube diameter. The experimental heat transfer coefficient of CO2 is about three times higher than that of R-134a. Laminar flow appears in the minichannel flows. A new boiling heat transfer coefficient correlation that is based on the superposition model for CO2 was developed with 8.41% mean deviation.  相似文献   

4.
An updated version of the Kattan–Thome–Favrat flow pattern based, flow boiling heat transfer model for horizontal tubes has been developed specifically for CO2. Because CO2 has a low critical temperature and hence high evaporating pressures compared to our previous database, it was found necessary to first correct the nucleate pool boiling correlation to better describe CO2 at high reduced pressures and secondly to include a boiling suppression factor on the nucleate boiling heat transfer coefficient to capture the trends in the flow boiling data. The new method predicts 73% of the CO2 database (404 data points) to within ±20% and 86% to within ±30% over the vapor quality range of 2–91%. The database covers five tube diameters from 0.79 to 10.06 mm, mass velocities from 85 to 1440 kg m−2 s−1, heat fluxes from 5 to 36 kW m−2, saturation temperatures from −25 °C to +25 °C and saturation pressures from 1.7 to 6.4 MPa (reduced pressures up to 0.87).  相似文献   

5.
Shell-side heat transfer coefficients of individual tubes for ammonia/lubricant mixture boiling on a 3 × 5 enhanced tube bundle were measured, enabling a detailed study of tube bundle effect under the influences of inlet quality, concentration of miscible lubricant (co-polymer of polyalkylene glycol, PAG), saturation temperature, and heat flux. Tests were conducted in the range of heat flux from 3.2 to 32.0 kW/m2, simulated inlet quality from 0.0 to 0.4, saturation temperature from −13.2 to +7.2 °C, and lubricant concentration from 0 to 10%. The data show that bundle effect is more significant at a higher saturation temperature. Most of the data in the bottom row are lower than the single-tube heat transfer coefficient data at a low saturation temperature. Lubricant renders the heat transfer coefficient lower in lower rows and higher in higher rows, therefore a larger range of data variation.  相似文献   

6.
This paper presents pool boiling heat transfer data for 12 different R134a/lubricant mixtures and pure R134a on a Turbo-BII™-HP surface. The mixtures were designed to examine the effects of lubricant mass fraction, viscosity, and miscibility on the heat transfer performance of R134a. The magnitude of the effect of each parameter on the heat transfer was quantified with a regression analysis. The mechanistic cause of each effect was given based on new theoretical interpretation and/or one from the literature. The model illustrates that large improvements over pure R134a heat transfer can be obtained for R134a/lubricant mixtures with small lubricant mass fraction, high lubricant viscosity, and a large critical solution temperature (CST). The ratio of the heat flux of the R134a/lubricant mixture to that of the pure R134a for fixed wall superheat was given as a function of pure R134a heat flux for all 12 mixtures. The lubricant that had the largest CST with R134a exhibited the greatest heat transfer: 100%±20% greater than that of pure R134a. By contrast, the heat transfer of the mixture with the lubricant that had the smallest viscosity and the smallest CST with R134a was 55%±9% less than that of pure R134a. High-speed films of the pure and mixture pool boiling were taken to observe the effect of the lubricant on the nucleate boiling.  相似文献   

7.
This paper describes the influence of a low viscosity polyolester based lubricating oil on the pool boiling heat transfer of the refrigerant R507. The pool boiling heat transfer coefficients for this refrigerant–oil mixture are measured on a smooth tube and on an enhanced tube. The investigation is made for oil mass fractions up to 10% and for saturation temperatures between −28.6°C and +20.1°C. For the smooth tube the heat transfer increases for increasing oil mass fractions up to 3% at lower saturation temperatures. At higher saturation temperatures the heat transfer decreases for increasing oil mass fractions for both tubes. For oil mass fractions greater than 1% at the higher saturation temperatures a range of decreasing heat transfer coefficient is found for increasing heat flux. The effect is caused by the different miscibility of the oil and the components of the refrigerant mixture.  相似文献   

8.
This paper presents the experimental tests on HFC-134a condensation inside a small brazed plate heat exchanger: the effects of refrigerant mass flux, saturation temperature and vapour super-heating are investigated.A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 20 kg/m2 s. For refrigerant mass flux lower than 20 kg/m2 s, the saturated vapour heat transfer coefficients are not dependent on mass flux and are well predicted by the Nusselt [Nusselt, W., 1916. Die oberflachenkondensation des wasserdampfes. Z. Ver. Dt. Ing. 60, 541–546, 569–575] analysis for vertical surface. For refrigerant mass flux higher than 20 kg/m2 s, the saturated vapour heat transfer coefficients depend on mass flux and are well predicted by the Akers et al. [Akers, W.W., Deans, H.A., Crosser, O.K., 1959. Condensing heat transfer within horizontal tubes. Chem. Eng. Prog. Symp. Ser. 55, 171–176] equation. In the forced convection condensation region, the heat transfer coefficients show a 30% increase for a doubling of the refrigerant mass flux. The condensation heat transfer coefficients of super-heated vapour are 8–10% higher than those of saturated vapour and are well predicted by the Webb [Webb, R.L., 1998. Convective condensation of superheated vapour. ASME J. Heat Transfer 120, 418–421] model. The heat transfer coefficients show weak sensitivity to saturation temperature. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow and therefore a quadratic dependence on the refrigerant mass flux.  相似文献   

9.
This paper reports an experimental investigation of convective boiling heat transfer and pressure drop of refrigerant R-134a in smooth, standard microfin and herringbone copper tubes of 9.52 mm external diameter. Tests have been conducted under the following conditions: inlet saturation temperature of 5 °C, qualities from 5 to 90%, mass velocity from 100 to 500 kg s−1 m−2, and a heat flux of 5 kW m−2. Experimental results indicate that the herringbone tube has a distinct heat transfer performance over the mass velocity range considered in the present study. Thermal performance of the herringbone tube has been found better than that of the standard microfin in the high range of mass velocities, and worst for the smallest mass velocity (G=100 kg s−1 m−2) at qualities higher than 50%. The herringbone tube pressure drop is higher than that of the standard microfin tube over the whole range of mass velocities and qualities. The enhancement parameter is higher than one for both tubes for mass velocities lower than 200 kg s−1 m−2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient.  相似文献   

10.
Carbon dioxide among natural refrigerants has gained a considerable attention as an alternative refrigerant due to its excellent thermophysical properties. In-tube evaporation heat transfer characteristics of carbon dioxide were experimentally investigated and analyzed as a function of evaporating temperature, mass flux, heat flux and tube geometry. Heat transfer coefficient data during evaporation process of carbon dioxide were measured for 5 m long smooth and micro-fin tubes with outer diameters of 5 and 9.52 mm. The tests were conducted at mass fluxes of from 212 to 656 kg m−2 s−1, saturation temperatures of from 0 to 20 °C and heat fluxes of from 6 to 20 kW m−2. The difference of heat transfer characteristics between smooth and micro-fin tubes and the effect of mass flux, heat flux, and evaporation temperature on enhancement factor (EF) and penalty factor (PF) were presented. Average evaporation heat transfer coefficients for a micro-fin tube were approximately 150–200% for 9.52 mm OD tube and 170–210% for 5 mm OD tube higher than those for the smooth tube at the same test conditions. The effect of pressure drop expressed by measured penalty factor of 1.2–1.35 was smaller than that of heat transfer enhancement.  相似文献   

11.
Evaporative heat transfer and pressure drop of R410A in microchannels   总被引:5,自引:0,他引:5  
Convective boiling heat transfer coefficients and two-phase pressure drops of R410A are investigated in rectangular microchannels whose hydraulic diameters are 1.36 and 1.44 mm. The mass flux was varied from 200 to 400 kg/m2s, heat flux from 10 to 20 kW/m2, as the saturation temperatures were maintained at 0, 5 and 10 °C. A direct heating method was used to provide heat flux into the fluid. The boiling heat transfer coefficients of R410A in the microchannels were much different with those in single tubes, and the test conditions only slightly affected the heat transfer coefficients before dryout vapor quality. The present heat transfer correlation for microchannels, which was developed by introducing non-dimensional parameters of Bo, Wel, and Rel used in the existing heat transfer correlations for large diameter tubes, yielded satisfactory predictions of the present data with a mean deviation of 18%. The pressure drops of R410A in the microchannels showed very similar trends with those in large diameter tubes. The existing two-phase pressure drop correlations for R410A in microchannels satisfactorily predicted the present data.  相似文献   

12.
This paper presents heat transfer data for a multiport minichannel heat exchanger vertically mounted as an evaporator in a test-rig simulating a small water-to-water heat pump. The multiport minichannel heat exchanger was designed similar to a shell-and-tube type heat exchanger, with a six-channel tube of 1.42 mm hydraulic diameter, a tube-side heat transfer area of 0.777 m2 and a shell-side heat transfer area of 0.815 m2. Refrigerant propane with a desired vapour quality flowed upward through the tubes and exited with a desired superheat of 1–4 K. A temperature-controlled glycol solution that flowed downward on the shell-side supplied the heat for the evaporation of the propane. The heat transfer rate between the glycol solution and propane was controlled by varying the evaporation temperature and propane mass flow rate while the glycol flow rate was fixed (18.50 l min−1). Tests were conducted for a range of evaporation temperatures from −15 to +10 °C, heat flux from 2000 to 9000 W m−2 and mass flux from 13 to 66 kg m−2 s−1. The heat transfer coefficients were compared with 14 correlations found in the literature. The experimental heat transfer coefficients were higher than those predicted by many of the correlations. A correlation which was previously developed for a very large and long tube (21 mm diameter and 10 m long) was in good agreement with the experimental data (97% of the data within ±30%). Several other correlations were able to predict the data within a reasonable deviation (within ±30%) after some adjustments to the correlations.  相似文献   

13.
Flow boiling heat transfer coefficient, pressure drop, and flow pattern are investigated in the horizontal smooth tube of 6.1 mm inner diameter for CO2, R410A, and R22. Flow boiling heat transfer coefficients are measured at the constant wall temperature conditions, while pressure drop measurement and flow visualization are carried out at adiabatic conditions. This research is performed at evaporation temperatures of −15 and −30 °C, mass flux from 100 to 400 kg m−2 s−1, and heat flux from 5 to 15 kW m−2 for vapor qualities ranging from 0.1 to 0.8. The measured R410A heat transfer coefficients are compared to other published data. The comparison of heat transfer coefficients for CO2, R410A, and R22 is presented at various heat fluxes, mass fluxes, and evaporation temperatures. The difference of coefficients for each refrigerant is explained with the Gungor and Winterton [K.E. Gungor, R.H.S. Winterton, A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transfer 29 (1986) 351–358] correlation based on the thermophysical properties of refrigerants. The Wattelet et al. [J.P. Wattelet, J.C. Chato, B.R. Christoffersen, J.A. Gaibel, M. Ponchner, P.J. Kenny, R.L. Shimon, T.C. Villaneuva, N.L. Rhines, K.A. Sweeney, D.G. Allen, T.T. Heshberger, Heat Transfer Flow Regimes of Refrigerants in a Horizontal-tube Evaporator, ACRC TR-55, University of Illinois at Urbana-Champaign, 1994], and Gungor and Winterton [K.E. Gungor, R.H.S. Winterton, A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transfer 29 (1986) 351–358] correlations give the best agreement with the measured heat transfer coefficients for CO2 and R410A. Pressure drop for CO2, R410A, and R22 at various mass fluxes, evaporation temperatures and qualities is presented in this paper. The Müller-Steinhagen and Heck [H. Müller-Steinhagen, K. Heck, A simple friction pressure drop correlation for two-phase flow in pipes, Chem. Eng. Process. 20 (1986) 297–308], and Friedel [L. Friedel, Improved friction pressure correlations for horizontal and vertical two-phase pipe flow, in: The European Two-Phase Flow Group Meeting, Ispra, Italy, 1979 (paper E2)] correlation can predict most of the measured pressure drop within the range of ±30%. The relation between pressure drop and properties for each refrigerant is described by applying the Müller-Steinhagen and Heck correlation. The observed two-phase flow patterns for CO2 and R410A are presented and compared with flow pattern maps. Most of the flow patterns can be determined by the Weisman et al. [J. Weisman, D. Duncan, J. Gibson, T. Crawford, Effect of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines, Int. J. Multiphase Flow 5 (1979) 437–462] flow pattern map.  相似文献   

14.
CO2 flow condensation heat transfer coefficients and pressure drop are investigated for 0.89 mm microchannels at horizontal flow conditions. They were measured at saturation temperatures of −15 and −25 °C, mass fluxes from 200 to 800 kg m−2 s−1, and wall subcooling temperatures from 2 to 4 °C. Flow patterns for experimental conditions were predicted by two flow pattern maps, and it could be predicted that annular flow patterns could exist in most of flow conditions except low mass flux and low vapor quality conditions. Measured heat transfer coefficients increased with the increase of mass fluxes and vapor qualities, whereas they were almost independent of wall subcooling temperature changes. Several correlations could predict heat transfer coefficients within acceptable error range, and from this comparison, it could be inferred that the flow condensation mechanism in 0.89 mm channels should be similar to that in large tubes. CO2 two-phase pressure drop, measured in adiabatic conditions, increased with the increase of mass flux and vapor quality, and it decreased with the increase of saturation temperature. By comparing measured pressure drop with calculated values, it was shown that several correlations could predict the measured values relatively well.  相似文献   

15.
Because of the ozone layer depletion and global warming, new alternative refrigerants are being developed. In this study, evaporation heat transfer characteristic and pressure drop of carbon dioxide flowing upward in vertical smooth and micro-fin tubes were investigated by experiment with regard to evaporating temperature, mass flux and heat flux. The vertical smooth and micro-fin tubes with outer diameter (OD) of 5 mm and length of 1.44 m were selected as a test section to measure the evaporative heat transfer coefficient. The tests were conducted at mass fluxes from 212 to 530 kg/(m2 s), saturation temperatures from −5 to 20 °C and heat fluxes from 15 to 45 kW/m2, where the test section was heated by a direct heating method. The differences of heat transfer characteristics between the smooth and the micro-fin tubes were analyzed with respect to enhancement factor (EF) and penalty factor (PF). Average evaporation heat transfer coefficients for the micro-fin tube were approximately 111–207% higher than those for the smooth tube at the same test conditions, and PF was increased from 106 to 123%.  相似文献   

16.
This paper investigates the effect that an additive had on the boiling performance of an R134a/polyolester lubricant (POE) mixture and an R123/naphthenic mineral oil mixture on a roughened, horizontal flat surface. Both pool boiling heat transfer data and lubricant excess surface density data are given for the R134a/POE (98% mass fraction/2% mass fraction) mixture before and after use of the additive. A spectrofluorometer was used to measure the lubricant excess density that was established by the boiling of the R134a/POE lubricant mixture before and after use of the additive. The measurements obtained from the spectrofluorometer suggest that the additive increases the total mass of lubricant on the boiling surface. The heat transfer data show that the additive caused an average and a maximum enhancement of the R134a/POE heat flux between 5 kW m−2 and 22 kW m−2 of approximately 73% and 95%, respectively. Conversely, for nearly the same heat flux range, the additive caused essentially no change in the pool boiling heat flux of an R123/mineral oil mixture. The lubricant excess surface density and interfacial surface tension measurements of this study were used to form the basis of a hypothesis for predicting when additives will enhance or degrade refrigerant/lubricant pool boiling.  相似文献   

17.
This paper reports on the experimental research conducted to study the condensation of ammonia on smooth and integral-fin (32 fpi) titanium tubes of 19.05 mm outer diameter. Experiments were carried out at saturation temperatures of 30, 35, 40 and 45 °C and wall subcoolings from 1 to 8 °C. The results show that the condensation coefficients on the smooth tubes are well predicted by the Nusselt theory with an average error of +0.66% and within a deviation between −6.6% and +8.3%. The enhancement factors provided by the integral-fin tubes range from 0.77 to 1.22. The low enhancement factors are due to the high condensate retention between fins, which brings about flooded fractions of the tube perimeter from 62.9% to 73.2%, and the low thermal conductivity of titanium. The Briggs and Rose [1994. Effect of fin efficiency on a model for condensation heat transfer on a horizontal, integral-fin tube. Int. J. Heat Mass Transfer 37, 457–463.] model, which accounts for the conduction in the fins, predicts the experimental data with a mean overestimation of 20%. The analysis of the partial thermal resistances in the overall heat transfer process points out the convenience of enhancing the outside ammonia condensation when high water velocities are considered inside the tubes.  相似文献   

18.
In this study, external condensation heat transfer coefficients (HTCs) are measured for nonazeotropic refrigerant mixtures (NARMs) of HFC32/HFC134a and HFC134a/HCFC123 on a low fin and Turbo-C tubes. All measurements are taken at the vapor temperature of 39 °C with the wall subcooling of 3–8 °C. Test results showed that condensation HTCs of NARMs on enhanced tubes were severely degraded from the ideal values showing up to 96% decrease. HTCs of the mixtures on Turbo-C tube were degraded more than those on low fin tube such that HTCs of the mixtures at the same composition were similar regardless of the tube. The mixture with larger gliding temperature differences (GTDs), HFC134a/HCFC123, showed a larger heat transfer reduction from the ideal values than the mixture with smaller GTDs, HFC32/HFC134a. Heat transfer enhancement ratios of the enhanced tubes with NARMs were almost 2 times lower than those with pure refrigerants and they decreased more as the GTDs of the mixtures increased.  相似文献   

19.
A comparison was made between the predictions of previously proposed empirical correlations and theoretical model and available experimental data for the heat transfer coefficient during condensation of refrigerants in horizontal microfin tubes. The refrigerants tested were R11, R123, R134a, R22 and R410A. Experimental data for six tubes with the tube inside diameter at fin root of 6.49–8.88 mm, the fin height of 0.16–0.24 mm, fin pitch of 0.34–0.53 mm and helix angle of groove of 12–20° were adopted. The r.m.s. error of the predictions for all tubes and all refrigerants decreased in the order of the correlations proposed by Luu and Bergles [ASHRAE Trans. 86 (1980) 293], Cavallini et al. [Cavallini A, Doretti L, Klammsteiner N, Longo L G, Rossetto L. Condensation of new refrigerants inside smooth and enhanced tubes. In: Proc. 19th Int. Cong. Refrigeration, vol. IV, Hague, The Netherlands, 1995. p. 105–14], Shikazono et al. [Trans. Jap. Sco. Mech. Engrs. 64 (1995) 196], Kedzierski and Goncalves [J. Enhanced Heat Transfer 6 (1999) 16], Yu and Koyama [Yu J, Koyama S. Condensation heat transfer of pure refrigerants in microfin tubes. In: Proc. Int. Refrigeration Conference at Purdue Univ., West Lafayette, USA, 1998. p. 325–30], and the theoretical model proposed by Wang et al. [Int. J. Heat Mass Transfer 45 (2002) 1513].  相似文献   

20.
This paper presents an overview of the flow boiling heat transfer characteristics and the special thermo-physical properties of CO2 at low temperatures (down to −30 °C). Subsequently, the boiling heat transfer of CO2 at low temperatures is experimentally investigated in a horizontal tube with inner diameter of 4.57 mm. Due to the large surface tension, the boiling heat transfer coefficient of CO2 is found to be much lower at low temperatures but it increases with vapour quality (until dryout), which is contrary to the trend at high temperatures around 0 °C. None of the empirical correlations from open literature were able to predict the boiling heat transfer coefficient for CO2 in good agreement with the experimental data, suggesting the need for further research in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号