首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To date, ionic conducting hydrogel attracts tremendous attention as an alternative to the conventional rigid metallic conductors in fabricating flexible devices, owing to their intrinsic characteristics. However, simultaneous realization of high stiffness, toughness, ionic conductivity, and freezing tolerance through a simple approach is still a challenge. Here, a novel highly stretchable (up to 660%), strong (up to 2.1 MPa), tough (5.25 MJ m?3), and transparent (up to 90%) ionic conductive (3.2 S m?1) organohydrogel is facilely fabricated, through sol–gel transition of polyvinyl alcohol and cellulose nanofibrils (CNFs) in dimethyl sulfoxide‐water solvent system. The ionic conductive organohydrogel presents superior freezing tolerance, remaining flexible and conductive (1.1 S m?1) even at ?70 °C, as compared to the other reported anti‐freezing ionic conductive (organo)hydrogel. Notably, this material design demonstrates synergistic effect of CNFs in boosting both mechanical properties and ionic conductivity, tackling a long‐standing dilemma among strength, toughness, and ionic conductivity for the ionic conducting hydrogel. In addition, the organohydrogel displays high sensitivity toward both tensile and compressive deformation and based on which multi‐functional sensors are assembled to detect human body movement with high sensitivity, stability, and durability. This novel organohydrogel is envisioned to function as a versatile platform for multi‐functional sensors in the future.  相似文献   

2.
Mechanically robust and electrically conductive organohydrogels/hydrogels are increasingly required in flexible electronic devices, but it remains a challenge to achieve organohydrogels/hydrogels with integrated high performances. Herein, inspired by the geometric deformability and robustness of fishing nets, multiscale ionic organohydrogels with outstanding isotropic mechanical robustness are developed. The organohydrogels are prepared by introducing polyacrylamide (PAM) hydrogel, Zn2+ and a binary solvent of glycerol-water into a crosslinked fibrous mat which is electrospun from poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA). Because of the unique structure, the resultant organohydrogels, being mentioned as PAA-PVA/PAM/Zn2+ organohydrogels, exhibit outstanding tensile strength (9.45 MPa), high stretchability, excellent anti-fatigue property, skin-like mechanical behaviors and ionic conductivity. Importantly, the organohydrogels are promising in flexible electronic devices capable of operating properly over a wide temperature range and under harsh mechanical conditions, such as mechanical-electrical signal transducing materials in flexible mechanosensors and robust electrolytes in zinc ion hybrid supercapacitors. Not only the multiscale design strategy will provide a clue to improve the mechanical properties of soft materials, but also the organohydrogels offer promising materials for future flexible electronic devices.  相似文献   

3.
Conductive polymer hydrogels are receiving considerable attention in applications such as soft robots and human-machine interfaces. Herein, a transparent and highly ionically conductive hydrogel that integrates sensing, UV-filtering, water-retaining, and anti-freezing performances is achieved by the organic combination of tannic acid-coated hydroxyapatite nanowires (TA@HAP NWs), polyvinyl alcohol (PVA) chains, ethylene glycol (EG), and metal ions. The highly ionic conductivity of the hydrogel enables tensile strain, pressure, and temperature sensing capabilities. In particular, in terms of the hydrogel strain sensors based on ionic conduction, it has high sensitivity (GF = 2.84) within a wide strain range (350%), high linearity (R2 = 0.99003), fast response (≈50 ms) and excellent cycle stability. In addition, the incorporated TA@HAP NWs act as a nano-reinforced filler to improve the mechanical properties and confer a UV-shielding ability upon the hydrogel due to its size effect and the characteristics of absorbing ultraviolet light waves, which can reflect and absorb short ultraviolet rays and transmit visible light. Meanwhile, owing to the water-locking effect between EG and water molecules, the hydrogel exhibits freezing resistance at low temperatures and moisture retention at high temperatures. This biocompatible and multifunctional conductive hydrogel provides new ideas for the design of novel ionic skin devices.  相似文献   

4.
Stretchable hydrogel microfibers as a novel type of ionic conductors are promising in gaining skin‐like sensing applications in more diverse scenarios. However, it remains a great challenge to fabricate coating‐free but water‐retaining conductive hydrogel microfibers with a good balance of spinnability and mechanical strength. Here the old yet significant redox chemistry of Fe‐citrate complex is employed to solve this issue in the continuous draw‐spinning process of poly(acrylamide‐co‐sodium acrylate) hydrogel microfibers and microfiber nets from a water/glycerol solution. The resultant microfibers are ionically conductive, highly stretchable, and uniform with tunable diameters. Furthermore, the presence of redox‐reversible Fe‐citrate complex and glycerol endows the fibers with good anti‐freezing, water‐retaining, and environmentally intelligent properties. Humidity and UV light can finely mediate the stiffness of hydrogel microfibers; conversely, the ionic conductance of microfibers is also responsive to light, humidity, and strain, which enables the highly sensitive perception of environmental changes. The present draw‐spinning strategy provides more possibilities for coating‐free conductive hydrogel microfibers with a variety of responsive and sensing applications.  相似文献   

5.
Light‐induced wireless soft electronic skin hydrogels with excellent mechanical and electronic properties are important for several applications, such as soft robotics and intelligent wearable devices. Precise control of reversible stretchability and capacitive properties depending on intermolecular interaction and surface characteristics remains a challenge. Here, a thin‐film hydrogel is designed based on titanium oxide (TiO2) polydopamine–perfluorosilica carbon dot‐conjugated chitosan–polyvinyl alcohol‐loaded tannic acid with controllable hydrophobic–hydrophilic transition in the presence of UV–vis light irradiation. The shifting of surface wettability from hydrophobic to hydrophilic by irradiation affects thin‐film water permeability and swelling ratio. This allows the penetration of water into the matrix to change its mechanical strength, electronic properties, and adhesive behavior. Specifically, the hydrogel displays mechanical strain as high as 278% in response to light stimuli and demonstrates the ability to regain its initial state determining the elasticity of the fabricated material. Moreover, the thin‐film hydrogel shows an increase in conductivity to 1.096 × 10?3 and 1.026 × 10?3 S cm?1 when irradiated with UV and visible light, respectively. The hydrogel exhibits capacitive reversibility that follows finger motion which can be identified directly or remotely using wireless connection, indicative of its possible applications as an artificial electronic skin.  相似文献   

6.
Stimuli‐responsive hydrogels with decent electrical properties are a promising class of polymeric materials for a range of technological applications, such as electrical, electrochemical, and biomedical devices. In this paper, thermally responsive and conductive hybrid hydrogels are synthesized by in situ formation of continuous network of conductive polymer hydrogels crosslinked by phytic acid in poly(N‐isopropylacrylamide) matrix. The interpenetrating binary network structure provides the hybrid hydrogels with continuous transporting path for electrons, highly porous microstructure, strong interactions between two hydrogel networks, thus endowing the hybrid hydrogels with a unique combination of high electrical conductivity (up to 0.8 S m?1), high thermoresponsive sensitivity (significant volume change within several seconds), and greatly enhanced mechanical properties. This work demonstrates that the architecture of the filling phase in the hydrogel matrix and design of hybrid hydrogel structure play an important role in determining the performance of the resulting hybrid material. The attractive performance of these hybrid hydrogels is further demonstrated by the developed switcher device which suggests potential applications in stimuli‐responsive electronic devices.  相似文献   

7.
Shape-persistent, conductive ionogels where both mechanical strength and ionic conductivity are enhanced are developed using multiphase materials composed of cellulose nanocrystals and hyperbranched polymeric ionic liquids (PILs) as a mechanically strong supporting network matrix for ionic liquids with an interrupted ion-conducting pathway. The integration of needlelike nanocrystals and PIL promotes the formation of multiple hydrogen bonding and electrostatic ionic interaction capacitance, resulting in the formation of interconnected networks capable of confining a high amount of ionic liquid (≈95 wt%) without losing its self-sustained shape. The resulting nanoporous and robust ionogels possess outstanding mechanical strength with a high compressive elastic modulus (≈5.6 MPa), comparable to that of tough, rubbery materials. Surprisingly, these rigid materials preserve the high ionic conductivity of original ionic liquids (≈7.8 mS cm−1), which are distributed within and supported by the nanocrystal network-like rigid frame. On the one hand, such stable materials possess superior ionic conductivities in comparison to traditional solid electrolytes; on the other hand, the high compression resistance and shape-persistence allow for easy handling in comparison to traditional fluidic electrolytes. The synergistic enhancement in ion transport and solid-like mechanical properties afforded by these ionogel materials make them intriguing candidates for sustainable electrodeless energy storage and harvesting matrices.  相似文献   

8.
Conductive hydrogels have emerged as fascinating materials applied in flexible electronics because of their integrated conductivity and mechanical flexibility. However, the large amounts of water in conductive hydrogels inevitably freeze at subzero temperature, causing a reduction of their ionic transport ability and elasticity. Herein, the bioinspired antifreezing agents—zwitterionic osmolytes (e.g., betaine, proline) are first proposed to prevent ammonium chloride‐containing Ca‐alginate/polyacrylamide hydrogels from freezing. With a facile one‐pot solvent displacement method, the zwitterionic osmolytes can displace the water molecules inside the hydrogels. Due to the excellent freeze tolerance of zwitterionic osmolytes, the resulting zwitterionic osmolyte‐based hydrogels exhibit outstanding ionic conductivity (up to ≈2.7 S m?1) at ?40 °C, which exceeds the conductivities of most reported conductive hydrogels. Meanwhile, they present stable mechanical flexibility over a wide temperature range (?40 to 25 °C). More importantly, two types of the resulting hydrogel‐based flexible electronics, including a capacitive sensor and a resistive sensor, can maintain their response function at ?40 °C. This work offers a new solution to fabricate conductive hydrogels with antifreezing ability, which can broaden the working temperature range of flexible electronics.  相似文献   

9.
The next generation of wearable electronics for health monitoring, Internet‐of‐Things system, “interface‐on‐invisible,” and green energy harvesting require electrically conductive material that is superiorly transparent, negligibly hysteretic, industrially feasible, and highly stretchable. The practical potential of ionic hydrogel is challenged with obvious hysteresis and a limited sensing range due to relative delamination and viscoelastic performance. Herein, a novel liquid conductor, termed as egg white liquid, is developed from self‐liquidation of egg white hydrogel, and the liquid not only inherits the designed architecture from a hydrogel predecessor but also achieves comparable conductivity (20.4 S m?1) to the ionic hydrogel and ultrahigh transparency (up to 99.8%) . Moreover, the 3D‐printed liquid–elastomer hybrid exhibits excellent conformability, remarkable sensitivity with negligible hysteresis (0.77%), and the capability of monitoring human motions and dynamic moduli is further demonstrated. The liquid nature inspires a gesture‐controlled touchless user interface for front‐end electronic systems. Furthermore, mechanical energy harvesting and pressure sensing are evidenced by exploiting this liquid conductor into a triboelectric nanogenerator. Notably, the as‐prepared liquid via subsequent phase transition possessing superior transparency, ultralow hysteresis, economic benefit, and unique liquid phase may potentially fuel the development of a new class of wearable electronics, human–machine interface, and clean energy.  相似文献   

10.
Ameliorating electronic/ionic transport and structural stability of electrode materials is important to the development of power‐intensive lithium ion batteries. Despite its great potential as a high‐power anode, titanium niobium oxide (Ti2Nb10O29, TNO) still underperforms due to its unsatisfactory electronic/ionic conductivity. In this work, a powerful synergistic strategy by combining ion doping and spiral array architecture to boost high‐rate performance of TNO is reported. Cr3+ doped TNO nanoparticles (Cr‐TNO) of 5–10 nm intimately grow on a conductive vertical graphene@TiC‐C (VGTC) skeleton, forming novel Cr‐TNO@VGTC spiral arrays. The unique spiral growth of TNO is achieved due to the confinement effect of VGTC skeleton. Meanwhile, a more open TNO crystal structure with faster ion transfer paths and enhanced structural stability is realized by Cr3+ doping, demonstrated via density functional theory calculation and in situ synchrotron X‐ray diffraction technique. Benefiting from the superior conductive network, enhanced intrinsic electronic/ionic conductivity of Cr‐TNO and reinforced structural stability, the Cr‐TNO@VTC arrays show prominent high‐power performance with a large capacity of 220 mAh g?1 at 40 C (power density of ≈11 kW kg?1) and superior durability (91% retention after 500 cycles). This work provides a new path for the construction of widespread high‐power electrodes for fast energy storage.  相似文献   

11.
Conductive coatings on complex fibrous systems are attracting interest for new electronic and other functional systems. Obtaining a quantitative conductivity value for complex surface coatings is often difficult. This work describes a procedure to quantify the effective electrical conductivity of conductive coatings on non‐conductive fibrous networks. By applying a normal force orthogonal to the current and field direction, fiber/fiber contact is improved and consistent conductance values can be measured. Nylon fibers coated with an electroless silver plating shows effective conductivity up to 1950 S cm?1, and quartz fibers coated with tungsten by atomic layer deposition (ALD) show values up to ~1150 S cm?1. Cotton fibers and paper coated with a range of ZnO film thicknesses by ALD show effective conductivity of up to 24 S cm?1 under applied normal force, and conductivity scaled as expected with film coating thickness. Furthermore, we use the conductive coatings to produce an “all‐fiber” metal–insulator–metal capacitor that functions as a liquid chemical sensor. The ability to reliably analyze the effective conductivity of coatings on complex fiber systems will be important to design and improve performance of similar devices and other electronic textiles structures.  相似文献   

12.
For soft electronic applications, the simultaneous incorporation of conductivity and mechanical robustness remains a grand constraint, not to mention being able to operate at wide temperatures ranges. Herein, a novel conductive platform is proposed by designing skin-inspired ionic organohydrogels based on Hofmeister effect and glycerol/water system, which simultaneously realize balanced conductivity, mechanical strength, and versatile properties. The comprehensive performances are broadly and simultaneously altered via tuning the aggregation states of polymer chains by kosmotropes or chaotropes. With various ions, the conductivity and mechanical strength are continuously in situ modulated over a large window: conductivity from 0.08 to 4.8 S m−1, strength from 0.01 to 17.30 MPa, toughness from 5.4 to 9236.9 kJ m−3, and modulus from 5.1 to 2258.9 kPa. The ion transport process is inseparable from the changes of water content and pore structures caused by cross-linking density. Meanwhile, the mechanical properties greatly depend on the densification or loosing of polymer chains and crystalline domains. Furthermore, oil/water system exhibits low temperature tolerance at ≈−65–15 °C and long-term stability. Finally, the champion organohydrogels are applied as wearable electronic sensors and artificial skins. The mechanism proposed in this work advances the understanding of the ions contribution to organohydrogels for electronic applications.  相似文献   

13.
It is of great importance to reinforce electronic and ionic conductivity of Li4Ti5O12 electrodes to achieve fast reaction kinetics and good high‐power capability. Herein, for the first time, a dual strategy of combing N‐doped Li4Ti5O12 (N‐LTO) with highly conductive TiC/C skeleton to realize enhanced ultrafast Li ion storage is reported. Interlinked hydrothermal‐synthesized N‐LTO nanosheets are homogeneously decorated on the chemical vapor deposition (CVD) derived TiC/C nanowires forming binder‐free N‐LTO@TiC/C core–branch arrays. Positive advantages including large surface area, strong mechanical stability, and enhanced electronic/ionic conductivity are obtained in the designed integrated arrays and rooted upon synergistic TiC/C matrix and N doping. The above appealing features can effectively boost kinetic properties throughout the N‐LTO@TiC/C electrodes to realize outstanding high‐rate capability at different working temperatures (143 mAh g?1/10 C at 25 °C and 122 mAh g?1/50 C at 50 °C) and notable cycling stability with a capacity retention of 99.3% after 10 000 cycles at 10 C. Moreover, superior high‐rate cycling life is also demonstrated for the full cells with N‐LTO@TiC/C anode and LiFePO4 cathode. The dual strategy may provoke wide interests in fast energy storage areas and motivate the further performance improvement of power‐type lithium ion batteries (LIBs).  相似文献   

14.
Biohybrid neural interfaces (BHNIs) are a new class of neuromodulating devices that integrate neural microelectrode arrays (MEAs) and cell transplantation to improve treatment of nerve injuries and disorders. However, current BHNI devices are made from abiotic materials that are usually bio-passive, non-biodisintegratable, or rigid, which restricts encapsulated cell activity and host nerve reconstruction and frequently leads to local tissue inflammation. Herein, the first MEA composed of all disintegratable hydrogel tissue scaffold materials with synergistic performances of tissue conformal adhesiveness, MEA technologies, tissue scaffolding and stem cell therapy on a time scale appropriate for nerve tissue repair is proposed. In particular, the MEA conductive tracks are made from extracellular matrix (ECM)-based double-cross-linked dual-electrically conductive hydrogel (ECH) systems with robust tissue-mimicking chemical/physical properties, electrical conductivity, and an affinity for neural progenitor stem cells. Meanwhile, the MEA hydrogel substrate prepared from transglutaminase-incorporated gelatin/silk precursors simultaneously promotes gelation and interfacial adhesion between all MEA stacks, leading to rapid and scalable device integration. When the full hydrogel MEA is subjected to various mechanical stimuli and moisture, it is structurally stable with a low impedance (4 ± 3 kΩ) comparable to a recently reported benchmark. With seamless lamination around peripheral nerve fibers, the device permits successive neural signal monitoring for wound condition evaluation, while demonstrating synergistic effects of spatiotemporally controlled electrical stimulation and cell transplantation to accelerate restoration of motor function. This BHNI is completely degraded by 1 month thus eliminating the need for surgical retrieval to stably remain, interact, and further fuse with host tissues, successfully exhibiting compatible integration of biology and an implanted electrical system.  相似文献   

15.
Current artificial tactile sensors mostly exploit a variety of electron‐related physical mechanisms to obtain high sensitivity and low detection force. However, these mechanisms are still distinct from the ion‐related biological processes of human's tactile sensation, and are therefore away from the goal of bionic applications. In the past few years, only several types of ionic tactile sensors have been proposed, and they are still subject to low sensitivity. Here, a novel type of ultrasensitive hydrogel tactile sensor is reported based on asymmetric ionic charge injection as the working mechanism, named as asymmetric ionic sensing hydrogel (AISH). With a small external working voltage of only tens of millivolts, these AISH devices show an extremely low detection force of 0.075 Pa, ultrahigh sensitivity of 57–171 kPa?1, and excellent cycling reliability upon pressing. Applications of these ultrasensitive tactile sensors in fingerprint identification of voice, monitoring of pulse waves, and detection of underwater wave signals are experimentally demonstrated. Combining the merits of simple fabrication process, ionic‐type detection mechanism, and ion injection procedure, such AISH sensors not only reveal a new strategy toward highly sensitive tactile sensors, but also show realistic potential applications in future wearable electronic and bioelectronic devices.  相似文献   

16.
Flexible conductive materials with intrinsic structural characteristics are currently in the spotlight of both fundamental science and advanced technological applications due to their functional preponderances such as the remarkable conductivity, excellent mechanical properties, and tunable physical and chemical properties, and so on. Typically, conductive hydrogel fibers (CHFs) are promising candidates owing to their unique characteristics including light weight, high length-to-diameter ratio, high deformability, and so on. Herein, a comprehensive overview of the cutting-edge advances the CHFs involving the architectural features, function characteristics, fabrication strategies, applications, and perspectives in flexible electronics are provided. The fundamental design principles and fabrication strategies are systematically introduced including the discontinuous fabrication (the capillary polymerization and the draw spinning) and the continuous fabrication (the wet spinning, the microfluidic spinning, 3D printing, and the electrospinning). In addition, their potential applications are crucially emphasized such as flexible energy harvesting devices, flexible energy storage devices, flexible smart sensors, and flexible biomedical electronics. This review concludes with a perspective on the challenges and opportunities of such attractive CHFs, allowing for better understanding of the fundamentals and the development of advanced conductive hydrogel materials.  相似文献   

17.
Conductive hydrogels are attracting tremendous interest in the field of flexible and wearable soft strain sensors because of their great potential in electronic skins, and personalized healthcare monitoring. However, conventional conductive hydrogels using pure water as the dispersion medium will inevitably freeze at subzero temperatures, resulting in the diminishment of their conductivity and mechanical properties; meanwhile, even at room temperature, such hydrogels suffer from the inevitable loss of water due to evaporation, which leads to a poor shelf‐life. Herein, an antifreezing, self‐healing, and conductive MXene nanocomposite organohydrogel (MNOH) is developed by immersing MXene nanocomposite hydrogel (MNH) in ethylene glycol (EG) solution to replace a portion of the water molecules. The MNH is prepared from the incorporation of the conductive MXene nanosheet networks into hydrogel polymer networks. The as‐prepared MNOH exhibits an outstanding antifreezing property (?40 °C), long‐lasting moisture retention (8 d), excellent self‐healing capability, and superior mechanical properties. Furthermore, this MNOH can be assembled as a wearable strain sensor to detect human biologic activities with a relatively broad strain range (up to 350% strain) and a high gauge factor of 44.85 under extremely low temperatures. This work paves the way for potential applications in electronic skins, human?machine interactions, and personalized healthcare monitoring.  相似文献   

18.
Recently, artificial intelligence research has driven the development of stretchable and flexible electronic systems. Conductive hydrogels are a class of soft electronic materials that have emerging applications in wearable and implantable biomedical devices. However, current conductive hydrogels possess fundamental limitations in terms of their antibacterial performance and a mechanical mismatch with human tissues, which severely limits their applications in biological interfaces. Here, inspired by animal skin, a conductive hydrogel is fabricated from a supramolecular assembly of polydopamine decorated silver nanoparticles (PDA@Ag NPs), polyaniline, and polyvinyl alcohol, namely PDA@Ag NPs/CPHs. The resultant hydrogel has many desirable features, such as tunable mechanical and electrochemical properties, eye‐catching processability, good self‐healing ability as well as repeatable adhesiveness. Remarkably, PDA@Ag NPs/CPHs exhibit broad antibacterial activity against Gram‐negative and Gram‐positive bacteria. The potential application of this versatile hydrogel is demonstrated by monitoring large‐scale movements of the human body in real time. In addition, PDA@Ag NPs/CPHs have a significant therapeutic effect on diabetic foot wounds by promoting angiogenesis, accelerating collagen deposition, inhibiting bacterial growth, and controlling wound infection. To the best of the authors' knowledge, this is the first time that conductive hydrogels with antibacterial ability are developed for use as epidermal sensors and diabetic foot wound dressing.  相似文献   

19.
The common techniques to improve hydrogel's mechanical properties include increasing crosslinking density and forming crosslinked double-network hydrogel, which may cause some hydrogels to lose their smart functionalities. Inspired by entanglement-induced strengthening, a simple approach to introducing hydroxypropyl cellulose (HPC) fibers entangled with different smart hydrogel matrix systems are reported. Different from the conventional methods which hinder the movement of the polymer network, through entanglement with HPC fibers, the composite hydrogel shows both improved Young's modulus and toughness and more importantly improved smart functionalities including response speed, anti-drying, and anti-freezing capabilities and cycle stability. This strategy provides a new design rule to fabricate durable and strengthened smart hydrogels which can be used in smart windows, sensors, and soft robots.  相似文献   

20.
Stretchable conductive fibers have received significant attention due to their possibility of being utilized in wearable and foldable electronics. Here, highly stretchable conductive fiber composed of silver nanowires (AgNWs) and silver nanoparticles (AgNPs) embedded in a styrene–butadiene–styrene (SBS) elastomeric matrix is fabricated. An AgNW‐embedded SBS fiber is fabricated by a simple wet spinning method. Then, the AgNPs are formed on both the surface and inner region of the AgNW‐embedded fiber via repeated cycles of silver precursor absorption and reduction processes. The AgNW‐embedded conductive fiber exhibits superior initial electrical conductivity (σ0 = 2450 S cm?1) and elongation at break (900% strain) due to the high weight percentage of the conductive fillers and the use of a highly stretchable SBS elastomer matrix. During the stretching, the embedded AgNWs act as conducting bridges between AgNPs, resulting in the preservation of electrical conductivity under high strain (the rate of conductivity degradation, σ/σ0 = 4.4% at 100% strain). The AgNW‐embedded conductive fibers show the strain‐sensing behavior with a broad range of applied tensile strain. The AgNW reinforced highly stretchable conductive fibers can be embedded into a smart glove for detecting sign language by integrating five composite fibers in the glove, which can successfully perceive human motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号