首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对比研究了电磁感应及传统箱式炉2种不同回火加热方式对1000 MPa级别高强度低合金钢淬火后组织中碳化物的尺寸、形貌、分布及其对力学性能的影响.结果表明,实验钢淬火后组织包括下贝氏体及板条马氏体.2种加热方式回火后,对于下贝氏体组织,随着回火温度由400℃升高至550℃,碳化物由针状向短棒状转变.其中,经550℃传统加热回火后,贝氏体内部碳化物长轴尺寸约为200 nm,而经该温度电磁感应加热回火后其长轴尺寸约为60 nm.对于板条马氏体组织,经传统加热回火后,碳化物主要沿着板条边界连串析出;电磁感应加热回火后,马氏体板条中析出的碳化物在板条内部及边界均匀弥散分布.经550℃传统方式回火后,马氏体中的碳化物尺寸约为200 nm,而电磁感应回火的碳化物尺寸均小于100 nm.经过不同加热方式回火后,实验钢的硬度差别不显著,随着回火温度升高,2种加热方式回火试样冲击功均升高,但感应加热回火后冲击功升高更为显著,实验钢经550℃电磁感应加热回火后-20℃冲击功达到133 J,是传统加热回火工艺的4.5倍,实现了1000 MPa级高强度低合金钢良好的强韧化组合.  相似文献   

2.
研究了热处理工艺参数对20Mn2Cr钢显微组织和性能的影响规律,并采用扫描电镜、透射电镜、电子背散射衍射技术等研究了不同奥氏体化温度和回火温度下实验钢中的马氏体组织特征和碳化物析出形貌.结果表明,实验钢经900℃奥氏体化处理时可以保证较小的原奥氏体晶粒尺寸及细小的马氏体板条束宽度;550℃再结晶退火可以进一步细化原奥氏体晶粒尺寸及马氏体板条束宽度;淬火后的回火处理有利于Cr碳化物粒子的析出.通过调整热处理工艺,20Mn2Cr钢可以获得1000~1700 MPa级的系列超高强度,同时可以实现超高强度与高塑性的良好匹配.  相似文献   

3.
研究了淬火态的工程机械用1000 MPa级高强钢在不同温度回火100 min后的组织和性能。结果表明,淬火态1000 MPa级高强钢于500~750℃回火,随回火温度升高,合金组织中淬火马氏体逐渐转变为回火马氏体、回火托氏体及回火索氏体,强度和硬度逐渐下降,伸长率和低温冲击功逐渐增加。回火温度为550~650℃时,合金获得最佳的力学性能匹配。回火温度超过700℃,合金发生再结晶,生成多边形铁素体,晶界碳化物球化长大,合金强度和硬度显著降低。  相似文献   

4.
采用SEM、TEM以及拉伸测试等研究SCM435钢在870℃淬火、350~650℃回火后的组织和力学性能。结果表明,回火温度为350℃时,其组织是板条马氏体及少量碳化物;随着回火温度的升高,马氏体的板条形态逐渐消失,碳化物沿板条方向析出长大,其中525℃回火后的组织尚有明显的马氏体板条形态并弥散分布着短棒状渗碳体。在试验回火温度范围内调控SCM435钢的力学性能,可以满足8.8~12.9级紧固件的力学性能要求。试验验证了870℃淬火+525℃回火钢的疲劳性能,中值疲劳极限σa50为425 MPa,具有较好的疲劳性能。  相似文献   

5.
王琪  吴光亮 《金属热处理》2022,47(4):146-150
研究了920 ℃水淬+不同温度回火后1100 MPa级高强钢的显微组织和力学性能。结果表明:回火温度为250 ℃时,所得到的力学性能最佳,抗拉强度、屈服强度、硬度、断后伸长率和冲击吸收能量分别为1423 MPa、1220 MPa、446 HV5、14.2%和56 J。随回火温度的升高,抗拉强度、屈服强度、硬度值整体呈现下降的趋势,冲击吸收能量先减小后增加。回火温度为150 ℃时,组织为回火马氏体和ε碳化物,析出的ε碳化物呈细长杆状。回火温度上升到250 ℃之后,马氏体板条稍有粗化,ε碳化物长大。随回火温度继续升高,板条马氏体逐渐转变为等轴铁素体,ε碳化物也会转变为渗碳体并逐渐球化粗化。  相似文献   

6.
为开发出屈服强度1300 MPa级的超高强度工程机械用钢,研究了回火温度对Q1300超高强钢组织和性能的影响规律。结果表明:淬火态钢板经220℃低温回火后,由于淬火应力消除和晶内ε碳化物的析出,试验钢的规定塑性延伸强度和低温冲击性能提高,硬度和抗拉强度下降;当回火温度高于250℃时,板条间的薄膜状残留奥氏体开始析出碳化物,降低晶界结合能,恶化试验钢的冲击韧性,回火温度为450℃时试验钢的冲击性能最差,此后继续增加回火温度,试验钢的冲击性能不断提高;当回火温度在200~300℃范围内变化时,试验钢的规定塑性延伸强度基本保持不变,此后随着回火温度增加,试验钢的规定塑性延伸强度逐渐下降。试验钢在250℃回火时,可以获得最优的力学性能,规定塑性延伸强度1381 MPa,抗拉强度1571 MPa,断后伸长率(A_(25)) 10. 6%,半尺寸试样-40℃的冲击吸收能量达到50 J。  相似文献   

7.
通过扫描电镜(SEM)、透射电镜(TEM)观察及硬度、拉伸性能测试,利用正交实验方差分析,研究了不同回火温度对45CrNiMoV高强钢析出相形貌和力学性能的影响。结果表明,实验钢回火温度对强度和冲击功均有显著影响,550℃回火后强/硬度达到最高值,600℃以上回火强/硬度急剧下降;实验钢回火温度从570℃提高到640℃,析出的碳化物形貌由条杆状向球形演变,570℃回火后,析出的细小的球状碳化物对马氏体板条边界存在钉扎作用。640℃回火后,析出的碳化物已经无法钉扎住板条边界;实验钢最佳热处理工艺为880℃油淬保温45 min+590℃回火240 min。  相似文献   

8.
对试验钢进行了两阶段控轧后直接淬火到室温,研究了250~600℃不同回火温度对组织和性能的影响。结果表明:在低于350℃回火时,试验钢的组织为细小的板条马氏体,碳化物的尺寸细小,且具有良好的强韧性;350℃回火的综合力学性能最好,抗拉强度为1630 MPa,屈服强度为1395 MPa,-20℃冲击吸收功为22 J;高于350℃回火,马氏体板条宽度明显增加,碳化物长大粗化,强度下降;450℃回火,出现粗大的碳化物导致回火脆性,韧性最差。  相似文献   

9.
陈建华  蓝秀琼 《金属热处理》2020,45(11):163-166
利用光学显微镜和透射电镜(TEM)研究了PRO500高强装甲钢经淬火、回火后显微组织与力学性能的演变规律。结果表明:870 ℃淬火组织为板条马氏体,随回火温度升高,马氏体逐渐完成分解,并伴随细小的碳化物颗粒析出、聚集长大,硬度总体呈逐渐下降趋势,600 ℃回火的硬度最低达到274 HV10;试验钢400 ℃回火可获得优良的综合力学性能,此时硬度为389 HV10,抗拉强度为1710 MPa,规定塑性延伸强度为1460 MPa,断后伸长率为11.0%。  相似文献   

10.
研究了T91钢焊后热处理对焊缝及母材组织性能的影响。结果表明,在740~780℃之间回火,焊缝硬度为264-237HV,回火马氏体板条特征明显,可以获得优良的焊接接头性能;回火温度超过780℃,焊缝板条马氏体特征消失,母材回火索氏体中碳化物产生偏聚,硬度、塑性明显降低。  相似文献   

11.
以一种屈服强度为1100 MPa的高强度工程机械用钢为对象,研究了再加热淬火温度(880~980 ℃)和回火温度(200~650 ℃)对Q1100钢显微组织和力学性能的影响。结果表明,淬火温度从880 ℃升高至980 ℃,试验钢的平均奥氏体晶粒尺寸从8 μm增加到24 μm,试验钢的屈服强度和抗拉强度都呈先升高后降低的趋势,并在920 ℃时达到最大,而-40 ℃冲击性能则随之持续降低。试验钢经920 ℃淬火+200~650 ℃回火后,随着回火温度的提高,试验钢的马氏体板条合并,板条形貌逐渐模糊,碳化物数量和形貌也随之发生改变,强度大幅下降,塑性和韧性则先降低后升高。试验钢最佳的热处理工艺为920 ℃淬火+200~250 ℃回火。  相似文献   

12.
利用力学性能测试、金相观察、TEM、SEM和XRD等分析手段,研究了回火温度对40CrNi3MoV和50CrNi5MoV钢组织与力学性能的影响。结果表明,40CrNi3MoV钢和50CrNi5MoV钢回火后的组织具有板条马氏体特征,在板条马氏体的边界分布着高密度位错。试验钢在500~650℃范围内回火时,随着回火温度的增加,碳化物析出并长大;硬度、强度呈下降趋势;而冲击吸收能量、伸长率、断面收缩率呈上升的趋势。由于C、Mo和Ni含量的增加,在500~550℃范围内回火后,50CrNi5MoV钢的屈服强度能够达到1400MPa级,比40CrNi3MoV钢高170MPa左右,且塑韧性较好。  相似文献   

13.
利用正交试验法研究了淬火、第一次回火、第二次回火对H13钢组织和性能的影响。结果表明:第二次回火对材料的强度和塑性影响最为显著,其次为淬火,最后是第一次回火;随淬火温度升高,抗拉和屈服强度升高,断面收缩率先升高后降低,伸长率降低;强塑性随第一次和第二次回火温度变化的趋势是一样的,随回火温度升高强度均下降,塑性升高。H13钢淬火后获得板条马氏体,淬火温度升高至1070℃时,马氏体开始明显粗化;回火后马氏体转变为回火马氏体,部分马氏体会产生回复再结晶,在马氏体板条间出现大量碳化物。  相似文献   

14.
采用力学性能测试、显微组织观察、扫描电镜观察,研究回火温度对Q1100超高强钢组织和性能的影响规律。结果表明:试验钢900 ℃保温后水淬再200~300 ℃回火后,为回火板条马氏体组织;在 400 ℃和500 ℃回火后,为回火屈氏体组织;在600 ℃回火后,为回火索氏体组织。试验钢具有较高的回火稳定性,在400~600 ℃回火时,α铁素体仍保持板条马氏体的形状和位向。在200 ℃回火后,小角度晶界含量较多,阻碍微裂纹扩展,韧性较好,随着回火温度的升高,小角度晶界占比逐渐减少,在400 ℃回火后,小角度晶界占比较少,碳化物的析出恶化试验钢的韧性,发生了回火脆性,韧性最差,500 ℃和600 ℃回火后,试验钢的小角度晶界占比较400 ℃相差不明显,但试验钢回复程度较大且600 ℃回火发生部分再结晶,回火软化作用较大,韧性较高。当回火温度为200 ℃时,试验钢具有最佳的综合性能,屈服强度为1164.38 MPa,抗拉强度为1429.70 MPa,断后伸长率为14.66%,硬度为430.27 HV3,标准试样-40 ℃冲击吸收能量为92.30 J。  相似文献   

15.
针对锥形磨浆机磨片的工作条件和失效分析,设计制备了一种低碳马氏体不锈钢Fe-0.04C-15Cr-3Ni-0.5Mo-0.1Nb。采用光学显微镜、扫描电子显微镜以及硬度、冲击和摩损试验等方法研究了热处理工艺对试验钢显微组织和性能的影响。结果表明,试验钢在940~1100℃之间加热保温1 h后空冷淬火,显微组织为板条马氏体和均匀分布的细小颗粒状含Nb的MC型碳化物,随加热温度的升高原始奥氏体晶粒逐渐长大,MC型碳化物颗粒减少,硬度在1020℃达到最大值45.2 HRC;经1020℃淬火550~750℃之间回火后,随回火温度的升高,在原奥氏体晶界和板条界析出M23C6型碳化物,硬度先减小后增大,韧性先增大后减小,700℃回火时,冲击吸收功达到最大值102.8 J,硬度达到最小值33 HRC,750℃回火时,由于开始形成奥氏体和M23C6型碳化物的溶解,回火后的空冷过程中奥氏体又形成马氏体,使硬度升高,冲击吸收功降低,在550~700℃之间回火,试验钢的耐磨性随回火温度的升高而降低。  相似文献   

16.
通过SEM、TEM、-20 ℃夏比V型冲击试验等分析手段研究了回火温度对工程机械用超高强钢微观组织及回火脆性的影响,并结合断口特征及微观组织分析裂纹扩展路径。结果表明,试验钢在200~500 ℃回火时,随着回火温度的升高,马氏体分解后形成的碳化物的析出位置从马氏体板条内逐步过渡到原始奥氏体晶界和马氏体板条界,其形状由针状变为粒状,并不断粗化。回火温度为200 ℃和500 ℃时,冲击试样断口的不稳定断裂区为韧性断裂。300 ℃回火时,出现了回火脆性,其冲击试样断口的不稳定断裂区为准解理断裂,裂纹扩展路径相对平直。微观组织分析发现,在原始奥氏体晶界及马氏体板条界析出大量的针状碳化物,这些碳化物提供了裂纹形核位置,促进了裂纹扩展,导致了回火脆性的产生。  相似文献   

17.
对Fe-12Cr马氏体钢包壳管材分别进行980~1050℃下保温15~30 min正火处理,随后在730~790℃温度下进行2 h回火处理,研究不同热处理工艺对Fe-12Cr马氏体钢包壳管材微观组织、室温和高温力学性能的影响。结果表明:正火处理后,冷轧Fe-12Cr马氏体钢的组织为板条马氏体,冷轧态的碳化物粒子会部分固溶于马氏体基体中;随正火温度的升高,残余碳化物的含量降低,且原奥氏体晶粒尺寸会增大(从980℃的9μm增至1050℃的12μm);回火处理后,马氏体基体上重新析出细小碳化物粒子,且随回火温度增加,碳化物粒子会发生粗化,平均尺寸为0.2~0.28μm,而马氏体板条间距几乎不随回火温度发生变化。Fe-12Cr马氏体钢经过1050℃×15 min正火+760℃×2 h回火处理后具有最佳的综合力学性能,其在600℃下的屈服强度为270 MPa,伸长率为40%;此时合金的碳化物粒子体积百分数最高,约为4.5%。  相似文献   

18.
对45Mn2V/Q345复合锯片用钢进行了系列温度的回火处理,测定了试验钢的强度与伸长率,并观察了其显微组织,分析了回火温度对复合钢板组织及拉伸性能的影响。结果表明:45Mn2V覆层淬火后得到针状马氏体,Q345钢基板形成板条马氏体。回火温度在400 ℃以下时,45Mn2V钢组织中析出的碳化物细小且弥散,超过400 ℃后则明显粗化,达到480 ℃时粗大的碳化物大量析出,导致试验钢的强度先随回火温度的升高而降低,但在480 ℃时有明显的增加。基板组织在回火过程中则主要发生马氏体板条的合并粗化,达到480 ℃后开始出现等轴的再结晶晶粒,但这一变化未能改善复合钢板的塑性。  相似文献   

19.
对C-Si-Mn系TRIP钢采用等温退火工艺,得到具有TRIP效应贝氏体基高强钢。结果表明,TBF钢的组织主要由无碳化物贝氏体板条束、块状残余奥氏体、板条束间的薄膜状残余奥氏体及少量的回火马氏体组成。在连退过程中,贝氏体等温温度对TBF钢的组织和性能影响显著,当贝氏体等温温度为300℃时,TBF钢具有低屈服强度(789 MPa)、高抗拉强度(1241 MPa)以及良好的伸长率(16.6%)。等温300℃时,屈服强度的降低主要是因为80~190 nm的无碳化物贝氏体板条的生成。经过XRD测定,其残余奥氏体含量为12.04%,残奥含碳量经过测算为1.4%。稳定的块状残余奥氏体和无碳化物贝氏体板条有利于韧性的提高,相反,马氏体应该减少或避免。  相似文献   

20.
借助DIL805A/D淬火变形膨胀仪,通过金相、透射电镜、室温拉伸、-40 ℃冲击测试等分析手段,研究了热处理工艺对960 MPa级高强钢组织与性能的影响。结果表明:在790~880 ℃温度范围内,试验钢随着淬火加热温度的提高,马氏体量逐渐增加,铁素体量逐渐减少,在850 ℃淬火,铁素体含量基本为零,组织最为均匀细小。随着回火温度从180 ℃提高到450 ℃,马氏体的板条逐渐分解,板条状的渗碳体开始聚集和球化。淬火加热温度高于850 ℃时,材料的屈服强度大于960 MPa;在450 ℃回火,材料具有更佳的冲击韧性。对本试验钢而言,采用850 ℃淬火+450 ℃回火,具有最佳的强韧性匹配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号