首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipophilic toxins associated with diarrhoeic toxins were found in Mytilus chilensis (Blue mussels) and Aulacomya ater (Ribbed mussels). These shellfish samples were collected from Chiloe Island, Southern Chile. The samples were tested by liquid chromatography-tandem mass spectrometry (LC-MS/MS). After the analysis, four toxins were found: DTX-1, DTX-3, YTX and PTX. All toxins were identified by comparing their HPLC retention times with those of analytical standards and confirmed by LC-MS/MS. Dinophysistoxin-1 (DTX-1) and dinophysistoxin-3 (DTX-3) toxins were the major components within the mussel extracts. Nevertheless, the percentages of these toxins differed depending on the area they were collected from and/or the sampling date. The levels detected in Butacheuques Island for okadaic acid (OA) was 267 ± 3.5 μg OA eq kg(-1) (p < 0.05) and for DTX-3 was 183.4 ± 7.5 μg kg(-1) in ribbed mussels. Pectenotoxin (PTX) and yessotoxin (YTX) were the toxins detected in minor proportions in the toxic profile of the bivalves. The maximum concentration of YTX detected in ribbed mussels was 85.2 ± 2.8 μg kg(-1) in Mechuque Island, whereas the PTX-2 level in ribbed mussels was 82.0 ± 2.4 μg kg(-1) in Cailin Island. Analogues of YTX and PTX-2 were not detected in any of the analysed mussels, which did not support the supposed presence of isomers of toxins as a result of the enzymatic metabolism of bivalves. This study found evidence proving co-occurrence of lipophilic toxins - like PTX and YTX - with diarrhoeic toxin in samples collected in Southern Chile, which is, to date, the more complex mix of lipophilic toxins ever found in mussels samples from Southern Chile.  相似文献   

2.
Lipophilic toxins associated with diarrhoeic toxins were found in Mytilus chilensis (Blue mussels) and Aulacomya ater (Ribbed mussels). These shellfish samples were collected from Chiloe Island, Southern Chile. The samples were tested by liquid chromatography–tandem mass spectrometry (LC-MS/MS). After the analysis, four toxins were found: DTX-1, DTX-3, YTX and PTX. All toxins were identified by comparing their HPLC retention times with those of analytical standards and confirmed by LC-MS/MS. Dinophysistoxin-1 (DTX-1) and dinophysistoxin-3 (DTX-3) toxins were the major components within the mussel extracts. Nevertheless, the percentages of these toxins differed depending on the area they were collected from and/or the sampling date. The levels detected in Butacheuques Island for okadaic acid (OA) was 267?±?3.5?µg OA?eq?kg?1 (p?<?0.05) and for DTX-3 was 183.4?±?7.5?µg?kg?1 in ribbed mussels. Pectenotoxin (PTX) and yessotoxin (YTX) were the toxins detected in minor proportions in the toxic profile of the bivalves. The maximum concentration of YTX detected in ribbed mussels was 85.2?±?2.8?µg?kg?1 in Mechuque Island, whereas the PTX-2 level in ribbed mussels was 82.0?±?2.4?µg?kg?1 in Cailin Island. Analogues of YTX and PTX-2 were not detected in any of the analysed mussels, which did not support the supposed presence of isomers of toxins as a result of the enzymatic metabolism of bivalves. This study found evidence proving co-occurrence of lipophilic toxins – like PTX and YTX – with diarrhoeic toxin in samples collected in Southern Chile, which is, to date, the more complex mix of lipophilic toxins ever found in mussels samples from Southern Chile.  相似文献   

3.
Samples of toxic scallop (Patinopecten yessoensis) and clam (Saxidomus purpuratus) collected on the northern coast of China from 2008 to 2009 were analysed. High-performance liquid chromatography with post-column oxidation and fluorescence detection was used to determine the profile of the main paralytic shellfish poisoning (PSP) toxins in these samples and their total toxicity. Hydrophilic interaction liquid ion chromatography with mass spectrometric detection confirmed the toxin profile and detected several metabolites in the shellfish. Results show that C1/2 toxins were the most dominant toxins in the scallop and clam samples. However, GTX1/4 and GTX2/3 were also present. M1 was the predominant metabolite in all the samples, but M3 and M5 were also identified, along with three previously unreported presumed metabolites, M6, M8 and M10. The results indicate that the biotransformation of toxins was species specific. It was concluded that the reductive enzyme in clams is more active than in scallops and that an enzyme in scallops is more apt to catalyse hydrolysis of both the sulfonate moiety at the N-sulfocabamoyl of C toxins and the 11-hydroxysulfate of C and GTX toxins to produce metabolites. This is the first report of new metabolites of PSP toxins in scallops and clams collected in China.  相似文献   

4.
Samples of toxic scallop (Patinopecten yessoensis) and clam (Saxidomus purpuratus) collected on the northern coast of China from 2008 to 2009 were analysed. High-performance liquid chromatography with post-column oxidation and fluorescence detection was used to determine the profile of the main paralytic shellfish poisoning (PSP) toxins in these samples and their total toxicity. Hydrophilic interaction liquid ion chromatography with mass spectrometric detection confirmed the toxin profile and detected several metabolites in the shellfish. Results show that C1/2 toxins were the most dominant toxins in the scallop and clam samples. However, GTX1/4 and GTX2/3 were also present. M1 was the predominant metabolite in all the samples, but M3 and M5 were also identified, along with three previously unreported presumed metabolites, M6, M8 and M10. The results indicate that the biotransformation of toxins was species specific. It was concluded that the reductive enzyme in clams is more active than in scallops and that an enzyme in scallops is more apt to catalyse hydrolysis of both the sulfonate moiety at the N-sulfocabamoyl of C toxins and the 11-hydroxysulfate of C and GTX toxins to produce metabolites. This is the first report of new metabolites of PSP toxins in scallops and clams collected in China.  相似文献   

5.
Thirteen laboratories participated in an inter-laboratory study to evaluate the method performance characteristics of a liquid chromatography-tandem mass spectrometric method (LC-MS/MS) for marine lipophilic shellfish toxins. Method performance characteristics were evaluated for mussel (Mytilus edulis), oyster (Crassostrea gigas) and cockle (Cerastoderma edule) matrices. The specific toxin analogues tested included okadaic acid (OA), dinophysistoxins-1 and -2 (DTX1, -2), azaspiracids-1, -2 and -3 (AZA1, -2, -3), pectenotoxin-2 (PTX2), yessotoxin (YTX), and 45-OH-yessotoxin (45-OH-YTX). The instrumental technique was developed as an alternative to the still widely applied biological methods (mouse or rat bioassay). Validation was conducted according to the AOAC-harmonised protocol for the design, conduct and interpretation of method-performance studies. Eight different test materials were sent as blind duplicates to the participating laboratories. Twelve laboratories returned results that were accepted to be included in the statistical evaluation. The method precision was expressed as HORRATs. For the individual toxins (except for 45-OH-YTX) HORRATs were found to be ≤1.8 (median HORRAT=0.8) in all tested materials. The recoveries of OA-, AZA- and YTX-group toxins were within the range of 80-108% and PTX2 was within the range of 62-93%. Based on the acceptable values for precision and recovery, it was concluded that the method is suitable for official control purposes to quantitatively determine OA/DTXs, AZAs, YTXs and PTX2 in shellfish.  相似文献   

6.
The applicability of GC, GC/MS and liquid chromatography with tandem mass spectrometry (LC/MS/MS) to screening for 140 pesticides in agricultural products was examined. Validation of multi-residue screening methods for the determination of 88 pesticides in 12 crops (asparagus, cauliflower, burdock, carrot, broccoli, spinach, matsutake mushroom, orange, soybean, sesame, millet and tea) was done by GC and GC/MS. Of the 88 pesticides, 63 were obtained with recoveries in the range from 50 to 150% at the 0.1 microg/g level in the 12 crops. Applicability of the official methods in Japan to 74 pesticides, including 22 pesticides with low recovery (< 50%) by GC or GC/MS analysis, was also examined by LC/MS/MS. LC/MS/MS acquisition parameters were established for 67 pesticides in positive and negative electrospray ionization (ESI) modes. Of 67 pesticides validated in 7 crops using LC/MS/MS at the 0.1 microg/g level, 44 showed recoveries in the range from 50 to 150%. The occurrence of matrix interference in LC/MS/MS can lead to false-positive detection of MCPA in spinach, cabbage and orange and false-negative detection of four pesticides in orange, spinach, apple and unpolished rice. Good linearity was observed in the studied ranges by GC, GC/MS (r > 0.990) and LC/MS/MS (r > 0.995). Of the total of 140 pesticides validated by GC, GC/MS and LC/MS/MS, 107 were newly recognized as suitable subjects for screening.  相似文献   

7.
The aim of this study was to analyse and determine the composition of paralytic shellfish poisoning (PSP) toxins and lipophilic toxins in the Region of Aysén, Chile, in wild endemic mussels (Mytilus chilensis, Venus antiqua, Aulacomya ater, Choromytilus chorus, Tagelus dombeii and Gari solida) and in two endemic carnivorous molluscs species (Concholepas concholepas and Argobuccinum ranelliforme). PSP-toxin contents were determined by using HPLC with fluorescence detection, while lipophilic toxins were determined by using LC-MS/MS. Mean concentrations for the total of PSP toxins were in the range 55–2505 μg saxitoxin-equivalent/100 g. The two most contaminated samples for PSP toxicity were bivalve Gari solida and carnivorous Argobuccinum ranelliforme with 2505 ± 101 and 1850 ± 137 μg saxitoxin-equivalent/100 g, respectively (p < 0.05). The lipophilic toxins identified were okadaic acid, dinophysistoxin-1 (DTX-1), azaspiracid-1 (AZA-1), pectenotoxin-2 (PTX-2) and yessotoxins (YTX). All analysed molluscs contained lipophilic toxins at levels ranging from 56 ± 4.8 to 156.1 ± 8.2 μg of okadaic acid-equivalent/kg shellfish together with YTX at levels ranging from 1.0 ± 0.1 to 18 ± 0.9 μg of YTX-equivalent/kg shellfish and AZA at levels ranging from 3.6 ± 0.2 to 31 ± 2.1 μg of AZA-equivalent/kg shellfish. Furthermore, different bivalves and gastropods differ in their capacity of retention of lipophilic toxins, as shown by the determination of their respective lipophilic toxins levels. In all the evaluated species, the presence of lipophilic toxins associated with biotransformation in molluscs and carnivorous gastropods was not identified, in contrast to the identification of PSP toxins, where the profiles identified in the different species are directly related to biotransformation processes. Thus, this study provides evidence that the concentration of toxins in the food intake of the evaluated species (Bivalvia and Gastropoda class) determines the degree of bioaccumulation and biotransformation they will thereafter exhibit.  相似文献   

8.
Ochratoxigenic fungi are natural contaminants of cereal and the produced toxins are harmful to humans and animals. Ochratoxin A (OTA) is among the most important mycotoxins, and the International Agency for Research on Cancer (IARC) classifies it as possibly carcinogenic to humans (group 2B). A total of 61 samples of bread from the central zone of Portugal were analysed for OTA by liquid chromatography (LC) with fluorescence detection (FD). For confirmation two procedures were applied, methyl ester derivatization with boron trifluoride-methanol and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS). As far as we know, this is the first report where on-line LC/electrospray ionization (ESI) tandem mass spectrometry (MS/MS) was used for OTA analysis in bread. Limits of detection (LOD) and quantification (LOQ) were 0.015 and 0.03 ng/g, using LC-FD, and 0.03 and 0.09 ng/g by LC-MS/MS. The incidence of OTA was 12.9% and 70.0% for wheat and maize bread, respectively. The highest OTA levels were obtained for maize bread, having one sample exceeded the European maximum limit established for OTA in cereal products. The estimate daily intake (EDI) was below the tolerable daily intake.  相似文献   

9.
Metabolites of toxigenic fungi and bacteria occur as natural contaminants (e.g. mycotoxins) in feedstuffs making them unsafe to animals. The multi-toxin profiles in 58 commercial poultry feed samples collected from 19 districts in 17 states of Nigeria were determined by LC/ESI-MS/MS with a single extraction step and no clean-up. Sixty-three (56 fungal and seven bacterial) metabolites were detected with concentrations ranging up to 10,200?μg?kg(-1) in the case of aurofusarin. Fusarium toxins were the most prevalent group of fungal metabolites, whereas valinomycin occurred in more than 50% of the samples. Twelve non-regulatory fungal and seven bacterial metabolites detected and quantified in this study have never been reported previously in naturally contaminated stored grains or finished feed. Among the regulatory toxins in poultry feed, aflatoxin concentrations in 62% of samples were above 20?μg?kg(-1), demonstrating high prevalence of unsafe levels of aflatoxins in Nigeria. Deoxynivalenol concentrations exceeded 1000?μg?kg(-1) in 10.3% of samples. Actions are required to reduce the consequences from regulatory mycotoxins and understand the risks of the single or co-occurrence of non-regulatory metabolites for the benefit of the poultry industry.  相似文献   

10.
Metabolites of toxigenic fungi and bacteria occur as natural contaminants (e.g. mycotoxins) in feedstuffs making them unsafe to animals. The multi-toxin profiles in 58 commercial poultry feed samples collected from 19 districts in 17 states of Nigeria were determined by LC/ESI–MS/MS with a single extraction step and no clean-up. Sixty-three (56 fungal and seven bacterial) metabolites were detected with concentrations ranging up to 10,200?µg?kg-1 in the case of aurofusarin. Fusarium toxins were the most prevalent group of fungal metabolites, whereas valinomycin occurred in more than 50% of the samples. Twelve non-regulatory fungal and seven bacterial metabolites detected and quantified in this study have never been reported previously in naturally contaminated stored grains or finished feed. Among the regulatory toxins in poultry feed, aflatoxin concentrations in 62% of samples were above 20?µg?kg?1, demonstrating high prevalence of unsafe levels of aflatoxins in Nigeria. Deoxynivalenol concentrations exceeded 1000?µg?kg?1 in 10.3% of samples. Actions are required to reduce the consequences from regulatory mycotoxins and understand the risks of the single or co-occurrence of non-regulatory metabolites for the benefit of the poultry industry.  相似文献   

11.
We developed a sample preparation and LC-MS/MS method for the determination of saxitoxins in toxic algae. Paralytic shellfish toxins (PSTs) were successfully separated by gradient elution on an amide column with the hydrophilic interaction mode and quantified with multiple reaction monitoring (MRM) detection in the positive ion mode. This method showed good performance in the summed LODs and LOQs for all 12 toxins, 25 and 84 nM, respectively. Next, extracts of cultured strains of a toxic dinoflagellate Alexandrium tamarense and a freshwater cyanobacteria Anabaena circinalis were treated in a short column of basic alumina and the toxic fractions were analysed by our LC-MS/MS method and by HPLC with fluorescence detection. Comparison of the results obtained by the two methods demonstrated that approximately equivalent results were obtained for both the dinoflagellate and the cyanobacteria. In addition, the retention time of the toxins showed acceptable shifts. Therefore, the clean-up of the toxic algal extracts by using the basic alumina column controlled unwanted chromatographic behaviour and variable ionisation efficiency during MS detection. LC-MS/MS for saxitoxins has great potential as a rapid analytical method for determining all primary saxitoxins in cultured algae.  相似文献   

12.
Digestive glands containing paralytic shellfish poisoning (PSP) toxins were isolated from toxic scallops. Citrate/phosphate buffers with the pH values ranging from 3 to 7 were added to achieve predetermined pH levels. The samples were heated at 90, 100, 110, 120 and 130°C using a computer controlled oil bath, and three tubes at each pH level were transferred into an ice bath immediately after predetermined heating times for up to 120 min. Both heated and unheated homogenates were analyzed for toxins qualitatively and quantitatively by high performance liquid chromatography (HPLC). Gonyautoxin (GTX) 2 and 3, saxitoxin (STX), neosaxitoxin (NEO) and C toxins were identified by HPLC. All toxins were most sensitive to higher temperatures and higher pH values. However, under gentle heating conditions and low pH, GTX 2 and 3 increased slightly. One explanation for this could be the increased extraction efficiency by heating. However, the conversion of sulfocarbamate toxins to highly toxic carbamate toxins upon heating in the presence of acid known as “Proctor” enhancement, could be another possible explanation for the apparent conversion of C1 and C2 toxins to GTX 2/3. The increase in STX may possibly be due to the conversion of GTX 2/3 and NEO into STX. The kinetics of thermal destruction were qualitatively similar to the thermal destruction of microorganisms. That is, the log survival of heated toxins was inversely proportional to time of heating and log decimal reduction time inversely related to temperature of heating. Efficacy of thermal destruction was highly dependent on pH, with more rapid thermal destruction at higher pH levels. The levels of individual toxins in the homogenate and those generated during heating could be reduced significantly by heating at 130°C at pH 6–7.  相似文献   

13.
目的 采用传统小鼠生物法(MBA)和酶联免疫吸附法(ELISA)对贝类样品中四类毒素进行检测, 为不同要求下建立或选择准确的贝类毒素检测快速筛选方法提供参考。方法 分别采用MBA和ELISA检测腹泻性贝毒(DSP)和麻痹性贝毒 (PSP), 并采用ELISA检测记忆缺损性贝毒(ASP) 和神经性贝毒(NSP)。结果 对2009~2011年8种67份贝类样品进行检测, 结果表明: 两种测试方法在实际应用中对DSP、PSP检测结果不存在差异, 检测结果有很好的吻合性。使用ELISA法对自制ASP、NSP模拟阳性样品进行检测, 均测得ASP、NSP, 检测结果满意。结论 两种筛选方法在贝类毒素检测中均有其应用空间。实验室可根据不同情况选择合适的检测方法。  相似文献   

14.
Aqueous film-forming foams (AFFF) are complex mixtures containing fluorocarbon- and hydrocarbon-based surfactants that are used to fight hydrocarbon-fueled fires. The military is the largest consumer of AFFF in the United States, and fire-training activities conducted at military bases have led to groundwater contamination by unspent fuels and AFFF chemicals. A direct-injection, liquid-chromatography tandem mass spectrometry (LC MS/MS) method was developed to quantify a suite of fluorotelomer sulfonate surfactants in groundwater collected from military bases where fire-training activities were conducted. The 4:2, 6:2, and 8:2 fluorotelomer sulfonates were detected and quantified in groundwater from two of the three military bases. The total fluorotelomer sulfonate concentrations observed at Wurtsmith AFB, MI, and Tyndall AFB, FL, ranged respectively from below quantitation (< or = 0.60) to 182 microg/L and from 1100 to 14,600 microg/L. Analyses of a fluorotelomer-based AFFF concentrate by negative ion fast atom bombardment/mass spectrometry and LC MS/MS analyses indicate that the AFFF concentrate contains only a small amount of fluorotelomer sulfonates and that fluoroalkylthioamido sulfonates are the main anionic fluorosurfactant in the mixtures. More research is needed to determine the fate of fluoroalkylthioamido sulfonates in the environment.  相似文献   

15.
Azaspiracids, a new class of shellfish toxins, have been implicated in several recent incidents of human intoxications following the consumption of mussels ( Mytilus edulis ). A study was undertaken to examine the distribution of azaspiracid poisoning (AZP) toxins in scallops ( Pecten maximus ) and individual shellfish were dissected into five tissue fractions for the determination of toxin composition. Separation of the predominant azaspiracids, AZA1-3, was achieved using reversed-phase liquid chromatography with detection by positive electrospray multiple tandem mass spectrometry. The AZP toxin composition was determined in the adductor muscle (meat), gonad (roe), hepatopancreas (digestive glands), mantle and gill of scallops. Substantial differences in the AZP toxin levels between tissue compartments were observed and toxins were concentrated predominantly, about 85%, in the hepatopancreas. There was also a significant variation in the total toxin levels between individual scallops from the same sample batch and the RSD was 60% (n = 9). Interestingly, although all three AZP toxins were present in phytoplankton and mussels, AZA3 was not detected in the scallop samples examined. It was concluded that to improve food safety, only the adductor muscle and gonad of scallops should be permitted for sale to the public.  相似文献   

16.
Contamination of shellfish with diarrhetic shellfish poisoning (DSP) toxins readily occurs during algal blooms. Such phenomena raise important public health concerns and thus comprise a constant challenge to shellfish farmers, the seafood industry and health services, considering the increasing occurrence of toxic episodes around the world. To avoid the detrimental effects of such episodes, research has focused on the use of various detoxification methodologies that should be rapid, efficient, easy to apply, and will not alter the quality and sensory properties of shellfish. In the present study, both ozonation (15 mg kg(-1) for 6 h) and γ-irradiation (6 kGy) were utilised in order to reduce the toxin content of contaminated shucked mussels, collected during the DSP episodes of 2007 and 2009 in Greece. DSP toxicity was monitored using the mouse bioassay (MBA) whilst the determination of toxin content of the okadaic acid (OA) group (both free and esterified forms) was carried out by LC/MS/MS analysis. Toxin reduction using γ-irradiation was in the range of 12-36%, 8-53% and 10-41% for free OA, OA esters and total OA, respectively. The appearance and texture of irradiated mussels deteriorated, pointing to a low potential for commercial use of this method. Ozonation of mussels resulted in toxin reduction in the range of 6-100%, 25-83% and 21-66% for free OA, OA esters and total OA, respectively. Reduction of OA content was substantially higher in homogenised mussel tissue compared with that of whole shucked mussels. In addition, differences detected with regard to quality parameters (TBA, sensory attributes) between ozonated and control mussels were not considerable. Even though varying percentage reductions in OA and its derivatives were achieved using ozonation under specific experimental conditions tested, it is postulated that upon optimisation ozonation may have the potential for post-harvest commercial DSP detoxification of shucked mussels.  相似文献   

17.
Microcystins (MCs) and cylindrospermopsin (CYL) are potent natural toxins produced by cyanobacteria (blue-green algae) that grow worldwide in eutrophic freshwaters and cause animal and human water-based toxicoses. The main purpose of this work has been assessing the contamination levels of some MCs and CYL in eutrophic Italian lake (Albano) water. To do this, we have developed an original analytical method involving MC extraction with a sorbent (Carbograph 4) cartridge. CYL is a highly polar compound that is scarcely retained by any sorbent material. To analyze this toxin, we directly injected 0.5 mL of filtered lake water into the liquid chromatography (LC) column. Analytes were quantified by LC coupled to tandem mass spectrometry in the multireaction monitoring mode. The recovery of five selected MCs added to an analyte free lake water sample at three different concentrations (50, 150, and 500 ng/L) ranged between 93 and 103% with RSD values no larger than 8%. Limits of quantification (LOQ) of the five MCs were within the 2-9 ng/L range, whereas the LOQ of CYL was 300 ng/L. The occurrence and abundance of cyanotoxins in Lake Albano was monitored over four months (Sept-Dec 2004) by analyzing water samples collected monthly at the center of the lake and at different depths (from 0 to -30 m). During survey and with the MS/MS system operating in the parent ion scan mode, we individuated two demethylated forms of MC-RR and one demethylated variety of MC-LR. Demethylated MC-RRs are known to be even more toxic than MC-RR toward zooplanktic grazers. CYL was the most-abundant toxin during the first three monitoring months. To the best of our knowledge, this is the first work reporting concentration levels of CYL in lake water.  相似文献   

18.
Jojoba wax is a natural gum base used as a food additive in Japan, and is obtained from jojoba oil with a characteristically high melting point. Although the constituents of jojoba oil have been reported, the quality of jojoba wax used as a food additive has not yet been clarified. In order to evaluate its quality as a food additive and to obtain basic information useful for setting official standards, we investigated the constituents and their concentrations in jojoba wax. LC/MS analysis of the jojoba wax showed six peaks with [M+H]+ ions in the range from m/z 533.6 to 673.7 at intervals of m/z 28. After isolation of the components of the four main peaks by preparative LC/MS, the fatty acid and long chain alcohol moieties of the wax esters were analyzed by methanolysis and hydrolysis, followed by GC/MS. The results indicated that the main constituents in jojoba wax were various kinds of wax esters, namely eicosenyl octadecenoate (C20:1-C18:1) (1), eicosenyl eicosenoate (C20:1-C20:1) (II), docosenyl eicosenoate (C22:1-C20:1) (III), eicosenyl docosenoate (C20:1-C22:1) (IV) and tetracosenyl eiosenoate (C24:1-C20:1) (V). To confirm and quantify the wax esters in jojoba wax directly, LC/MS/MS analysis was performed. The product ions corresponding to the fatty acid moieties of the wax esters were observed, and by using the product ions derived from the protonated molecular ions of wax esters the fatty acid moieties were identified by MRM analysis. The concentrations of the wax esters I, II and III, in jojoba wax were 5.5, 21.4 and 37.8%, respectively. In summary, we clarified the main constituents of jojoba wax and quantified the molecular species of the wax esters without hydrolysis by monitoring their product ions, using a LC/MS/MS system.  相似文献   

19.
Sixty-eight samples of cereals products, including breakfast cereals (n = 48) and infant cereals (n = 20), purchased from supermarkets and pharmacies in Rabat-Salé area from Morocco were analysed for the determination of six emerging mycotoxins: four enniatins ENs (ENA, ENA1, ENB and ENB1), beauvericin (BEA) and fusaproliferin (FUS). Samples were extracted with a mixture of acetonitrile:water (85:15, v/v), using an Ultra-Turrax® homogeniser. Mycotoxins were then identified and quantified by liquid chromatography (LC) with diode array detection (DAD). Positive samples were confirmed by LC–MS/MS.  相似文献   

20.
Raw materials, intermediates and subsidiary colours in Food Yellow No. 5 (Sunset Yellow FCF) were determined using liquid chromatography/mass spectrometry (LC/MS) with electrospray ionization. A gradient consisting of acetonitrile and 0.04% aqueous ammonium carbonate solution was used for the HPL C mobile phase. Quasi-molecular ions of impurities were used as monitor ions. It was necessary to use fragment ions of the sodium salts of 6-hydroxy-5-phenylazo-2-naphthalenesulphonic acid (SS-AN) and 4-(2- hydroxy-1- naphthylazo) benzenesulphonic acid (2N-SA) as monitor ions because the compounds are not resolved by chromatography and have the same molecular weight. Fifteen samples of commercial Sunset Yellow FCF were examined. The results obtained by UV-Vis spectroscopy were in good agreement with the results of LC/MS analyses. The detection limits of the impurities in Sunset Yellow FCF ranged from 0.01 to 0.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号