首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Heavy-duty trucks, in particular class 8 tractor-trailer combinations for freight, are a major contributor to the total greenhouse gas (GHG) emissions in transportation systems worldwide. Diesel fuel vastly dominates this market due to its relatively low operating cost. However, both GHG and air pollutant emissions from diesel combustion are significant, which raises doubts about the long-term sustainability of this mode of transportation. A possible short-term opportunity to address this problem is to blend diesel with hydrogen by retrofitting existing fuel injection systems and fuel storage onboard the trucks. Thus, a life cycle assessment is conducted to evaluate the overall environmental and economic impacts of implementing hydrogen and diesel dual-fuel solutions in heavy-duty trucks. The results show a significant reduction in emissions, proportionally to the diesel displacement ratio. Importantly, the use of hydrogen fuel is also shown to provide potential cost savings in this highly cost-sensitive application for hydrogen pricing below C$4/kg. Hence, waste hydrogen available at low cost can facilitate immediate emission reduction and operational cost savings for existing truck fleets, and act as an economical bridge solution for sustainable heavy-duty freight.  相似文献   

2.
In this paper, the environmental benefits or renewable energy systems are initially presented followed by a study of the thermal performance, economics and environmental protection offered by thermosiphon solar water heating systems. The system investigated is of the domestic size, suitable to satisfy most of the hot water needs of a family of four persons. The results presented in this paper show that considerable percentage of the hot water needs of the family are covered with solar energy. This is expressed as the solar contribution and its annual value is 79%. Additionally, the system investigated give positive and very promising financial characteristics with payback time of 2.7 years and life cycle savings of 2240 € with electricity backup and payback time of 4.5 years and life cycle savings of 1056 € with diesel backup. From the results it can also be shown that by using solar energy considerable amounts of greenhouse polluting gasses are avoided. The saving, compared to a conventional system, is about 70% for electricity or diesel backup. With respect to life cycle assessment of the systems, the energy spent for the manufacture and installation of the solar systems is recouped in about 13 months, whereas the payback time with respect to emissions produced from the embodied energy required for the manufacture and installation of the systems varies from a few months to 3.2 years according to the fuel and the particular pollutant considered. It can therefore be concluded that thermosiphon solar water hearting systems offer significant protection to the environment and should be employed whenever possible in order to achieve a sustainable future.  相似文献   

3.
O. U. Oparaku   《Renewable Energy》2003,28(13):2089-2098
A large proportion of the population of Nigeria reside in the rural communities. In this work, the financial costs of providing centralized (photovoltaic) PV generating system of various capacities—to satisfy different load requirements—in a remote village in Nigeria is compared with the cost of grid extension over a distance of 1.8 km. Comparison is also made with the centralised diesel generator power supply option. In addition, the costs of decentralised PV home systems are compared with those of decentralised gasoline generator systems. For all the systems, the initial capital costs and the life cycle costs over a 20-year life cycle are reported. Sensitivity analysis was performed using variations in module costs, diesel fuel prices and grid extension distance. The results suggest that PV has a remarkable potential as a cost-effective option for low-power electrical energy supply to the rural communities in the country.  相似文献   

4.
The technical and economic feasibility of utilizing solar energy at South Africa's SANAE IV station in Antarctica was evaluated in order to estimate potential financial and external savings, and to alleviate the programme's dependence on the special blend of diesel shipped annually from Cape Town. The average global horizontal and tilted insolation rates at the base were studied, energy consumption data of the station was investigated, technical performance characteristics of devices for harnessing solar energy were assessed and an economic analysis was completed. It was shown that at SANAE IV flat-plate solar thermal collectors could potentially be used in conjunction with the snow smelter (a device that meets the station's fresh water demand) and that photovoltaic modules could feasibly be used to reduce the station's electrical demand. Flat-plate solar thermal collectors could collect solar energy at an average of 3.13 R/kWh (viz. 0.49 US$/kWh) from a suggested 143 m2 array, while comparatively a 40 kWp photovoltaic system would be less economically sound and only able to pay back costs at the end of the system's expected 25-year lifetime, generating electricity at an estimated 3.20 R/kWh (annual electrical consumption at SANAE IV amounts to more than 1062 MWh). The total diesel savings of the solar thermal and photovoltaic systems were estimated at approximately 12 245 and 9958 l, respectively, which represent savings in externalities of R67 338 and R55 879 each.  相似文献   

5.
Comparative life cycle energy cost analysis for different electricity generators (photovoltaic generator, kerosene generator and diesel generator) used during load shedding is presented. The parameters considered for calculation of the unit cost of energy are: the discount rate, inflation rate, IREDA loan facility to promote PV, operation and maintenance cost of PV and fuel generator (FG) set and the associated fuel cost. It is found that the unit cost of PV electricity is comparable to or less than that of FG generated electricity at present market prices.  相似文献   

6.
Standalone diesel generating system utilized in remote areas has long been practiced in Malaysia. Due to highly fluctuating diesel price, such a system is seemed to be uneconomical, especially in the long run if the supply of electricity for rural areas solely depends on such diesel generating system. This paper would analyze the potential use of hybrid photovoltaic (PV)/diesel energy system in remote locations. National Renewable Energy Laboratory’s (NREL) HOMER software was used to perform the techno-economic feasibility of hybrid PV/diesel energy system. The investigation demonstrated the impact of PV penetration and battery storage on energy production, cost of energy and number of operational hours of diesel generators for the given hybrid configurations. Emphasis has also been placed on percentage fuel savings and reduction in carbon emissions of different hybrid systems. At the end of this paper, suitability of utilizing hybrid PV/diesel energy system over standalone diesel system would be discussed mainly based on different solar irradiances and diesel prices.  相似文献   

7.
The recent policy of the Malaysian government to promote use of renewable, especially photovoltaic, energy has warranted a feasibility study on supplementing diesel generation in off-grid sites by solar (photovoltaic) electricity to be done in the Malaysian context. This paper addresses the technical viability and economy of using a photovoltaic (PV) system to supplement an existing diesel generator-based supply in a typical secondary school located at an interior, off-grid and rural site of Sarawak state in East Malaysia. The findings of the present study, would therefore, help the Government with a realistic picture of the techno-economic aspects in implementing its vision regarding renewable energy. Presently, a 150 kW diesel generator supplies electricity to the considered school. The study required simulation of the load sharing pattern of the PV–diesel hybrid system taking into account varied weather and insolation conditions of the chosen site. Also, the purchase price as well as the size of the supplementing PV system that would give the lowest life cycle cost have been determined. The PV system was considered in both forms, i.e. with and without battery back-up. It has been found that if the market price for purchasing a PV system would drop to RM 11.02/WP (Ringgit Malaysia; US$1.00=RM 3.80) i.e. US$2.90/WP, a 35 kWP PV system without battery back-up in conjunction with the diesel generator would be able to supply the selected school’s demand at a marginally lower energy cost than the existing diesel-only system. With continuous research and developments, PV price would keep falling in the near future so that a PV–diesel hybrid system with a higher sized PV is expected to be economically more viable. The reported feasibility study can serve as a guideline for making similar studies in the context of another off-grid site.  相似文献   

8.
The economics of stand-alone photovoltaic power system is studied to test its feasibility in remote and rural areas of Bangladesh and to compare renewable generators with non-renewable generators. The life cycle cost of these generators are determined using the method of net present value analysis. It is found that the life cycle cost of this experimental PV system is Tk. 43.40/kWh for one family (US $1.00 = Bangladeshi taka Tk.50.00). The life cycle cost for grid electricity is Tk. 20.00/kWh and Tk. 7.75/kWh for generation of fuel costs of Tk. 6.80/kWh and Tk. 0.47/kWh respectively. For a village 1 km away from the distribution line, this cost becomes Tk. 125.00/kWh for a family. For petrol generator life cycle cost is Tk. 50.00/kWh at fuel price of Tk. 22.00 per litre. For diesel generator life cycle cost is found to be Tk. 46.10/kWh at fuel cost of Tk. 15.00 per litre. It is observed that the life cycle cost of one unit of energy from grids that are 1 km away from a village is much higher than the cost of energy from a PV system. Thus, the use of PV system is economically feasible in rural villages and remote areas of Bangladesh, where grid electricity is not available.  相似文献   

9.
A procedure is developed for assessing the economic viability of a solar heating system in terms of the life cycle savings of a solar heating system over a conventional heating system. The life cycle savings is expressed in a generalized formby introducing two economic parameters, P1 and P2, which relate all life cycle cost considerations to the first year fuel cost or the initial solar system investment cost. Using the generalized life cycle savings equation, a method is developed for calculating the solar heating system design which maximizes the life cycle savings. A similar method is developed for determining the set of economic conditions at which the optimal solar heating system design is just competitive with the conventional heating system. The results of these optimization methods can be presented in tabular or graphical form. The sensitivity of the economic evaluation and optimization calculations to uncertainties in constituent thermal and economic variables is also investigated.  相似文献   

10.
柴油及其替代燃料生命周期排放评价   总被引:1,自引:0,他引:1  
建立了柴油、生物柴油、DME、F-T柴油等柴油替代燃料生命周期排放评价模型,提出柴油替代燃料生命周期排放综合外部成本指标,并对它们进行了生命周期排放评价。结果表明:与柴油比较,生物柴油、甲醇脱水法和天然气二步法制DME的生命周期排放综合外部成本升高;天然气一步法制DME和F-T柴油的生命周期排放综合外部成本降低。从降低生命周期排放角度出发,天然气一步法制DME和F-T柴油是较好的柴油替代燃料。  相似文献   

11.
This paper presents comparative life cycle assessment of nine different hybrid power generation solutions that meet the energy demand of a prototypical mobile home. In these nine solutions, photovoltaic panels and a wind turbine are used as the main energy source. Fuel cell and diesel generator are utilized as backup systems. Batteries, compressed H2, and H2 in metal hydrides are employed as backup energy storage. The findings of the study shows that renewable energy sources, although they are carbon-free, are not as environmentally friendly as may generally be thought. The comparative findings of this study indicate that a hybrid system with a wind turbine as a main power source and a diesel engine as backup power system is the most environmentally sound solution among the alternatives.  相似文献   

12.
This study compares the environmental impacts of a polycrystalline photovoltaic (PV) module and a wind turbine using the life cycle assessment (LCA) method. This study models landfill disposal and recycling scenarios of the decommissioned PV module and wind turbine, and compares their impacts to those of the other stages in the life cycles. The comparison establishes that the wind turbine has smaller environmental impacts in almost all of the categories assessed. The disposal stage can become a major contributor to the environmental impacts, depending on disposal scenarios. Recycling is an environmentally efficient method, because of its environmental benefits derived from energy savings and resource reclaimed. The end-of-life recycling scenario for a wind turbine has a significant part on the environmental impacts and should not be ignored. However, many factors also influence the degree to which recycling can be beneficial. With the wind turbine recycling scenario, when large quantities of waste are recycled, the potential savings can be quite large, while with the PV module, small quantities of recycled waste mean that the benefits of recycling are not fully reaped.  相似文献   

13.
This paper focuses on the statistical analysis of the energy fraction supplied by solar energy for solar water heating systems based on the f-chart method. An analysis is also presented for photovoltaic systems, where costs are linearly proportional to collector area. The uncertainty of the solar fraction is correlated with the monthly means of the global irradiation and the correlation coefficient between monthly means. Numerical examples for one location in Brazil and three locations in the United States are presented. These examples show that the uncertainty of the life cycle savings is significantly dependent on the uncertainty of the monthly means of the solar radiation data. The present analysis intends to provide a basic procedure that could be useful to make a straightforward feasibility analysis of a solar system. This is particularly interesting to evaluate the investment risk associated with photovoltaic plants, for which the capital costs are comparable to the advantages in saving electric energy from the utility grid under present scenarios in most places.  相似文献   

14.
The various load profile characteristics most commonly encountered in photovoltaic installations are analyzed in conjunction with solar array and battery performance data and used to generate battery specifications with particular respect to operating characteristics and cycle life requirements.The design of lead-acid batteries for photovoltaic applications is discussed and illustrated with both operating, maintenance, and cycle life data. Other performance characteristics of lead-acid photovoltaic batteries are described including the effects of operating temperature and the correct choice of charging method for various operational requirements.  相似文献   

15.
In this paper, the TRNSYS Simulation Program is used to investigate the monthly and annual solar fraction of a Thermosyphon Solar Water Heater and to evaluate its economic viability in terms of its life cycle savings over a conventional water heating system. The results of the simulation indicate that the yearly solar contribution of the system ranges from 63% for a high hot water consumption profile to 89% for a low consumption pattern. The payback period of the system is as low as 3 years when compared to electric water heating systems. As long as the competitor is diesel oil, the payback period increases to 7–9 years, depending on the hot water consumption profile used.  相似文献   

16.
基于多晶硅金刚线切割工艺的光伏生命周期分析   总被引:1,自引:0,他引:1       下载免费PDF全文
金刚线切割工艺已经成为当今光伏产业硅片生产的主流技术.该文采用生命周期分析方法,以1 kW多晶硅太阳电池光伏发电系统为模型,研究使用金刚线切割工艺替代原来的砂浆切割技术后,这一技术更新所带来的光伏产品的能耗和碳排放量的降低效应.计算表明:应用金刚线切割工艺的光伏系统生命周期碳排放为1358.53 kg/kW,金刚线切割...  相似文献   

17.
With life cycle assessment (LCA) methodology, a life cycle model of coal-based dimethyl ether (CBDME) as a vehicle fuel is established for China. Its life cycle from well to wheel are divided into three phases. They are feedstock extraction, fuel production and fuel consumption in vehicle. The primary energy consumption (PEC) and global warming potential (GWP) of CBDME pathway are analyzed and compared with coal-based diesel (CBD) as a latent rival to replace conventional petroleum-based diesel (CPBD).  相似文献   

18.
A solar plant for hot-water production was investigated by the dynamic simulation code (TRNSYS). A typical daily home consumption for a 4 persons family was considered. The hot-water demand temperature (53 °C) is controlled by a conventional fuel auxiliary heater and a tempering valve. A heat-exchanger is considered between collector and storage tank. The fluids circulate by pumps activated by photovoltaic panels. This simplifies plant control systems and allows for stand-alone utilization of the plant. Annual energy performance, in terms of solar fraction, was calculated for three Italian localities. The economic viability of such a plant was evaluated with the life cycle savings (LCS) method, considering three conventional fuels (Gas-Oil, LPG and Electricity). Italian Government incentives show an economic viability only in comparison with electrical energy.  相似文献   

19.
This study examined the performance and emission characteristics of a household size trigeneration based on a diesel engine generator fuelled with hydrogen comparing to that of single generation, cogeneration using ECLIPSE simulation software. In single generation simulation, the engine genset is used to produce electricity only and the heat from the engine is rejected to the atmosphere. In cogeneration and trigeneration, in addition to the electricity generated from the genset, the waste heat rejected from the hot exhaust gases and engine cooling system, is captured for domestic hot water supply using heat exchangers and hot water tank; and a part of the waste heat is used to drive absorption cooling in trigeneration. Comparisons have been made for the simulated results of these three modes of operation for hydrogen and diesel. The results prove that hydrogen is a potential energy vector in the future which is a key to meeting upcoming stringent greenhouse gases emissions. The study show that hydrogen has very good prospects to achieve a better or equal performance to conventional diesel fuel in terms of energetic performance, and a near zero carbon emission, depending on the life cycle analysis of the way the hydrogen is produced. The results also show enormous potential fuel savings and massive reductions in greenhouse gas emissions per unit of useful energy outputs with cogeneration and trigeneration compared with that of single generation.  相似文献   

20.
The potential of solar water heating systems to reduce domestic energy use is frequently acknowledged. However there are two factors that are rarely discussed when studying this technology. Firstly the real performance of the installed systems in operation, and secondly a life cycle perspective of its energy use. These two issues are reviewed in this paper, and a field study in Ireland is also presented. In the review, some studies show that measured real performance of domestic solar water heating systems can be lower than expectations. Concerning their life cycle energy performance, existing studies show that the initial energy investment for the systems (their embodied energy) is a small portion of the energy savings over their lifetime with calculation paybacks generally lower than 2 years. On the field study carried in Ireland, representative of a maritime north European climate, the ‘energy payback’ based on the expected energy savings is between 1.2 and 3.5 years, values comparable to previous studies considering the less favourable climate and installation characteristics. However the measured energy savings generally worsened the life cycle energy performance of this technology and thus increased the energy payback period. The study concludes that while there is a real potential for life cycle energy savings through domestic solar water heating installations, devising mechanisms to ensure proper design, installation and operation of systems is essential for this technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号