首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究高强耐火钢在高温下的力学性能,通过国产Q345FR、Q420FR、Q460FR耐火钢的高温下稳态拉伸试验和热膨胀变形试验,得到了20~800℃下各等级耐火钢的破坏模式、应力-应变关系曲线、力学性能参数及热膨胀系数,并与普通结构钢高温性能以及欧洲、中国的抗火设计规范的相关规定进行了对比。研究结果表明:在温度低于350~400℃时,国产高强耐火钢屈服强度、抗拉强度高于常温的,当温度超过400℃后,屈服强度、抗拉强度开始快速下降;欧洲规范EC3中给出的高温下普通结构钢的弹性模量、强度计算公式不适用于高强度耐火钢;温度低于450℃时,耐火钢试验值与GB 51249—2017《建筑钢结构防火技术规范》中普通钢取值更吻合;温度高于450℃时,耐火钢试验值与规范GB 51249—2017中耐火钢取值更吻合。针对Q345FR、Q420FR、Q460FR高强耐火钢,提出了高温下弹性模量、屈服强度、抗拉强度变化系数拟合公式,可用于耐火钢结构抗火设计。  相似文献   

2.
通过升温、冷却和拉伸试验,对历经300~900℃高温后的Q690钢材在自然冷却和浸水冷却条件下的力学性能展开试验研究。结果表明:经高温冷却的Q690钢材在不同温度和不同冷却方式下有不同的外观特征;受热温度超过500℃时,高温冷却对Q690钢材的弹性模量影响很小,对其强度和伸长率影响较大;当受热温度不超过700℃时,Q690钢材高温后的强度和伸长率在两种冷却方式下具有基本相同的变化规律;在700~800℃之间,不同冷却方式对Q690钢材高温后强度和伸长率产生影响,且随温度升高差别愈加明显,自然冷却条件下强度降低且伸长率增大,浸水冷却条件下强度增大且伸长率减小。将Q690钢材高温后力学性能与Q235钢材和Q460钢材比较,认为不同强度等级钢材高温后的力学性能差别显著,在自然冷却条件下较高强度钢材(Q690)的强度衰减和延性增长大于较低强度钢材(Q235和Q460)的。根据试验结果,建立了不同冷却条件下的高温后各力学参数与受热温度之间的数学模型,该模型可用于火灾后Q690钢结构的承载能力的评估。  相似文献   

3.
Fire-resistance design is one of the most important considerations when structural engineers conduct design of steel structures. As a basis of analyzing fire performance of steel structures, elevated-temperature mechanical properties of structural steels are significant for practical design. The recommendations of current European, American, Australian and British standards were mainly obtained from mild steels, which are in question when used to conduct fire-resistance design of high strength steel structures. In order to reveal the elevated-temperature mechanical properties of high strength steel S460N, tensile tests were conducted at various temperatures ranged 20–700 °C. The elevated-temperature reduction factors of elastic modulus, yield and ultimate strengths of S460N were obtained and compared with current design standards and available literature. According to the comparison between this research result on S460N and the available research results in literature on S460N, S460M and various mild steels, it is found that the deterioration of mechanical properties of structural steels at elevated temperature is dependent on steel grades. Thus the recommendations in current design standards are not applicable to high strength structural steels. Further unique predictive equations for the deterioration of high strength structural steel S460 at elevated temperatures were proposed and validated with available literature.  相似文献   

4.
通过国产Q690高强钢的稳态试验研究,得到20~800℃下钢材的试验现象、应力-应变关系曲线、力学性能参数,并将所得试验结果与相关规范和已有研究进行比较。研究发现:随温度升高,试验后钢材表面及断口形貌区别明显,应力-应变关系曲线的初始线弹性段缩短、极限应力对应应变减小、下降段趋于平缓;弹性模量、屈服强度和抗拉强度等力学性能指标随温度升高而降低;而断后伸长率在200~500℃时相较于常温值有小幅度下降,600℃后明显增加;当温度低于500℃时,不同名义屈服强度折减系数之间存在较大差异。目前已有研究建议的钢材高温力学性能模型并不适用于Q690高强钢,通过试验结果拟合得到了高温下Q690钢力学性能模型,以期用于Q690钢材的钢结构抗火安全评估与设计。  相似文献   

5.
通过稳态法进行了控轧控冷(TMCP)型Q550高强钢在不同温度下的力学性能试验研究,得到常温及200~800℃9个不同高温下钢材的表观特征、应力-应变关系与基本力学性能参数,包括弹性模量、屈服强度、抗拉强度及断后伸长率。结果表明:应力-应变关系曲线在常温时有屈服平台而高温下没有,在超过300℃的高温下曲线形状不同;温度不超过300℃时弹性模量与强度小幅增长,此后二者皆随温度升高而减小,且400~700℃为主要的衰减区间;温度不超过450℃时断后伸长率有所折减,此后则随温度升高而增大。与已有的淬火回火(QT)型Q550高强钢相应研究结果的对比表明,TMCP与QT型Q550高强钢高温下的强度折减规律与程度基本一致,但TMCP型Q550高强钢高温下的弹性模量折减程度比QT型Q550高强钢严重。从微观组织方面解释了Q550高强钢高温力学性能的变化。根据试验结果,建立TMCP型Q550高强钢高温下的力学性能参数模型。  相似文献   

6.
高强钢高温下和高温后的力学性能是进行高强钢结构抗火设计和火灾后评估的重要基础。我国GB 51249—2017《建筑钢结构防火技术规范》和欧洲规范EC3中针对普通低碳钢提出了高温下屈服强度和弹性模量计算公式,但其不适用于高强钢。国内外学者对高温下和高温后高强钢力学性能已开展了一系列试验研究,但由于钢材强度等级、试验设备、加热速率和加载制度等影响,导致试验结果离散性较大,不能应用于实际工程中。同时不同学者提出的力学性能指标计算式各不相同,均不具有普遍适用性。采用数理统计中t分布与置信区间的方法对高强钢高温下和高温后力学性能试验数据进行统计分析,得到不同温度下力学性能指标具有95%保证率的标准值,拟合出高强钢高温下和高温后力学性能指标的计算式,并与GB 51249—2017和欧洲规范EC3预测结果进行对比。结果表明:自然冷却和浸水冷却条件下,高强钢高温后屈服强度发生明显下降的转折点分别是600℃和 500℃;高温下高强钢的屈服强度折减系数低于普通结构钢;高强钢弹性模量折减系数在作用温度小于600℃时低于普通结构钢的,而在温度大于600℃时高于普通结构钢的。  相似文献   

7.
Q345冷成型钢高温力学性能试验研究   总被引:1,自引:0,他引:1  
冷成型钢高温材料特征指标是进行冷成型钢结构抗火设计及数值模拟的重要参数。现有的钢材高温材性数据大多基于稳态试验方法得到,而瞬态试验方法较前者更接近实际火灾情况。利用MTS810试验系统对1.5mm厚Q345冷成型钢进行了高温力学性能试验研究,将瞬态、稳态试验结果进行对比分析。试验结果表明: Q345冷成型钢瞬态试验抗拉强度折减系数在430~700 ℃时普遍高于稳态试验结果,二者相对误差27%~57%;超过100 ℃,Q345冷成型钢瞬态试验高温弹性模量明显低于稳态试验结果,相对误差17%~156%;450~550 ℃时,相同温度、应变水平下,Q345冷成型钢瞬态试验应力-应变曲线弹塑性阶段应力值明显高于稳态试验应力值,导致瞬态试验高温屈服强度高于稳态试验结果,相对误差28%~40%。通过数值拟合给出Q345冷成型钢高温材性折减系数及本构关系表达式,表达式与试验结果基本吻合。  相似文献   

8.
高强钢高温下和高温后的力学性能是进行高强钢结构抗火设计和火灾后评估的重要基础。我国GB 51249—2017《建筑钢结构防火技术规范》和欧洲规范EC3中针对普通低碳钢提出了高温下屈服强度和弹性模量计算公式,但其不适用于高强钢。国内外学者对高温下和高温后高强钢力学性能已开展了一系列试验研究,但由于钢材强度等级、试验设备、加热速率和加载制度等影响,导致试验结果离散性较大,不能应用于实际工程中。同时不同学者提出的力学性能指标计算式各不相同,均不具有普遍适用性。采用数理统计中t分布与置信区间的方法对高强钢高温下和高温后力学性能试验数据进行统计分析,得到不同温度下力学性能指标具有95%保证率的标准值,拟合出高强钢高温下和高温后力学性能指标的计算式,并与GB 51249—2017和欧洲规范EC3预测结果进行对比。结果表明:自然冷却和浸水冷却条件下,高强钢高温后屈服强度发生明显下降的转折点分别是600℃和 500℃;高温下高强钢的屈服强度折减系数低于普通结构钢;高强钢弹性模量折减系数在作用温度小于600℃时低于普通结构钢的,而在温度大于600℃时高于普通结构钢的。  相似文献   

9.
通过稳态拉伸试验法对国产超高强钢Q890在不同火灾高温条件下的力学性能进行了试验研究,得到高温下钢材的力学性能参数、应力-应变关系曲线和试验现象,并将所得试验结果与钢结构抗火设计规范及相关超高强钢研究文献中高温材料模型结果进行比较。分别采用多项式模型和钢材高温通用材料模型对试验结果进行数值拟合,建立高温下Q890钢力学性能参数的材料模型。结果表明:不同温度条件下的Q890钢试件在试验后有明显不同的外观特征,相应的应力-应变关系曲线基本形状差异较大;当受热温度低于500 ℃时,弹性模量和强度随温度升高逐步减小,断后伸长率变化不大;超过500 ℃后,弹性模量和强度下降速率明显加快,断后伸长率急剧增大;所建立的模型为研究Q890钢结构抗火性能及其计算方法提供理论基础。  相似文献   

10.
高温下Q345钢的材料性能试验研究   总被引:12,自引:0,他引:12  
主要对我国建筑钢结构中常用的Q345钢进行了高温下的材料性能试验。试验得到的数据有 :应力 应变关系曲线、屈服强度、极限强度、弹性模量和延伸率。根据试验结果得到了可用于理论分析的高温钢材模型 ,并与其他国家推荐的高温钢材模型进行了比较  相似文献   

11.
为研究热冲压球壳Q235钢材高温后的力学性能,对经历400~900℃高温后由自然冷却和喷水冷却到常温空心球加工制作成的受拉试样进行拉伸试验,得到高温冷却后该材料的应力-应变曲线、弹性模量、屈服强度、抗拉强度和断后伸长率,并与普通Q235钢高温后力学性能进行了对比。研究结果表明:当经历温度不超过500℃时,钢材高温后强度与断后伸长率在两种冷却方式下变化规律基本类似,且变化很小。当经历温度超过500℃后,不同冷却方式对材料高温后强度与断后伸长率产生明显影响,且温度越高,相差越大,自然冷却方式下,随着温度的升高,强度降低而断后伸长率变大。喷水冷却方式下,抗拉强度增大而伸长率减小,屈服强度在500~700℃之间逐渐增大,700℃之后又快速下降。弹性模量受经历温度与冷却方式的影响较小。  相似文献   

12.
Ju Chen  Ben Young   《Thin》2007,45(1):96-110
This paper presents the mechanical properties data for cold-formed steel at elevated temperatures. The deterioration of the mechanical properties of yield strength (0.2% proof stress) and elastic modulus are the primary properties in the design and analysis of cold-formed steel structures under fire. However, values of these properties at different temperatures are not well reported. Therefore, both steady and transient tensile coupon tests were conducted at different temperatures ranged approximately from 20 to 1000 °C for obtaining the mechanical properties of cold-formed steel structural material. This study included cold-formed steel grades G550 and G450 with plate thickness of 1.0 and 1.9 mm, respectively. Curves of elastic modulus, yield strength obtained at different strain levels, ultimate strength, ultimate strain and thermal elongation versus different temperatures are plotted and compared with the results obtained from the Australian, British, European standards and the test results predicted by other researchers. A unified equation for yield strength, elastic modulus, ultimate strength and ultimate strain of cold-formed steel at elevated temperatures is proposed in this paper. A full strain range expression up to the ultimate tensile strain for the stress–strain curves of cold-formed carbon steel at elevated temperatures is also proposed in this paper. It is shown that the proposed equation accurately predicted the test results.  相似文献   

13.
高温后HRBF500细晶粒钢筋力学性能试验研究   总被引:4,自引:1,他引:3  
试验研究了16组共48根HRBF500细晶粒钢筋在常温和高温冷却作用后(5种温度、3种冷却方式)的力学性能,得到了不同高温冷却作用后细晶粒钢筋的应力-应变关系,分析了屈服强度、抗拉强度、弹性模量、断后伸长率、均匀伸长率、截面收缩率等的变化规律。试验表明:温度作用相对较低时(300℃、400℃、600℃),细晶粒钢筋力学性能变化不明显;温度作用相对较高时(700℃、900℃),细晶粒钢筋各项力学指标逐渐退化。根据试验结果,经回归分析建议了高温后细晶粒钢筋屈服强度、抗拉强度、弹性模量、断后伸长率的计算公式。研究成果可作为火灾后采用HRBF500级细晶粒钢筋混凝土结构的损伤评估的依据。图12表6参7  相似文献   

14.
钢材的火灾全过程高温本构是开展冷成型钢结构抗火研究的重要输入数据。为此,开展国内常用Q345冷成型钢高温力学性能试验研究,定量考察峰值温度保温时间、降温速率、温度历程以及稳态与瞬态试验方法等试验制度参数对其力学性能的影响,结果表明: 高温稳态试验中,峰值温度保温时间和降温速率对钢材高温力学性能影响不明显,相对百分偏差均介于-10%~10%之间;若温度历程中各次升温过程峰值温度中的最高温度和拉伸温度均相同,则钢材在多次升降温过程下的高温力学性能与其在一次升降温过程降温段的高温材性相互接近; 高温瞬态试验中,温度历程对钢材高温试验应变影响显著;相同拉伸温度下,升温与降温段的应变相对偏差最高可达12904%; 稳态与瞬态试验方法对考虑温度历程的冷成型钢高温应变影响亦非常明显,试验参数范围内,相同拉伸温度下应变相对百分偏差最大可达14851%。总之,Q345冷成型钢的火灾全过程高温本构需考虑温度历程中各次升温过程峰值温度中的最高温度和拉伸温度的影响,且稳态与瞬态试验方法所构建的高温本构模型并不等效。  相似文献   

15.
钢材的火灾全过程高温本构是开展冷成型钢结构抗火研究的重要输入数据。为此,开展国内常用Q345冷成型钢高温力学性能试验研究,定量考察峰值温度保温时间、降温速率、温度历程以及稳态与瞬态试验方法等试验制度参数对其力学性能的影响,结果表明: 高温稳态试验中,峰值温度保温时间和降温速率对钢材高温力学性能影响不明显,相对百分偏差均介于-10%~10%之间;若温度历程中各次升温过程峰值温度中的最高温度和拉伸温度均相同,则钢材在多次升降温过程下的高温力学性能与其在一次升降温过程降温段的高温材性相互接近; 高温瞬态试验中,温度历程对钢材高温试验应变影响显著;相同拉伸温度下,升温与降温段的应变相对偏差最高可达12904%; 稳态与瞬态试验方法对考虑温度历程的冷成型钢高温应变影响亦非常明显,试验参数范围内,相同拉伸温度下应变相对百分偏差最大可达14851%。总之,Q345冷成型钢的火灾全过程高温本构需考虑温度历程中各次升温过程峰值温度中的最高温度和拉伸温度的影响,且稳态与瞬态试验方法所构建的高温本构模型并不等效。  相似文献   

16.
Compared with the conventional steel structure, the high-strength steel structures are at more risk of brittle fracture, especially in cold regions. In the present study, a series of tests (such as uniaxial tensile test, Charpy impact test and three-point bending test) were carried out at low temperature to investigate the mechanical properties and toughness of Q460C steel and its butt welded joint, fracture micro-mechanisms were analyzed as well. The ductility indices and the toughness indices all decrease with temperature decreases, the heat affected zone (HAZ) in welded joint is more critical to fracture than the base material. The fracture toughness of high-strength steel Q460C is relatively lower than the other three conventional steels (i.e. Q235, Q345 and Q390). In this study, rich experimental data were collected so as to provide reference for the fracture resistant design of high-strength steel structures in cold regions.  相似文献   

17.
高强度结构钢材Q460-C低温冲击韧性试验研究   总被引:2,自引:0,他引:2  
高强度钢材在建筑行业中逐渐被应用,而随着钢材强度的增大,其韧性性能会有一定程度的退化,特别是在低温环境中更加明显。因此,有必要研究高强度建筑钢材的冲击韧性。通过对14 mm厚的高强钢材Q460-C进行低温下的冲击韧性试验,并将其夏比冲击功值与60,90,120,150 mm厚Q345的AKV值进行比较分析。结果显示,Q460-C的冲击韧性随温度的降低而下降,在20~-20℃,14 mm厚Q460-C钢材的低温冲击功值依次低于同温度下的150,120,90,60 mm厚Q345的AKV值,在低于―20℃时,Q460钢材的强度对其低温脆性的影响没有Q345钢材的厚度对其低温脆性的影响明显。同时,还利用Boltzmann函数对试验结果进行拟合分析,得到Q460-C钢材的韧脆转变温度为-11.1℃;最后对不同温度点下的冲击试件断口进行扫描电镜分析,观察到-20℃下冲断的试件断口形貌有相当的脆性特征,基本已完成了从韧性向脆性断裂的转变。试验表明,Q460-C钢材的低温脆性特征明显,应引起足够重视。  相似文献   

18.
为研究火灾后钢材承受机械振动、风致振动和车辆振动等动力荷载的疲劳性能,通过升温、自然冷却和疲劳试验,对室温和经历250~750℃高温自然冷却后的40个Q345钢材试样进行轴向拉伸疲劳性能试验研究。结果表明:不同高温自然冷却后Q345钢材疲劳断口的破坏特征存在明显差异,裂纹扩展区和瞬断区的面积随温度升高而发生变化;Q345钢材在室温或经高温自然冷却后的疲劳断口具有典型韧窝组织,受热温度不超过500℃时韧窝组织随温度升高而增多变密,受热温度为750℃时韧窝组织减少、变浅且大小分布不均匀,主要表现为具有撕裂痕迹的类解理破坏;经高温自然冷却后Q345钢材的疲劳寿命随着温度增加而呈先增加后减小的变化趋势,与常温下钢材的疲劳寿命相比,500℃以内时,疲劳寿命随温度升高而增加,最大增幅为277.18%,750℃时疲劳寿命下降了65.27%。根据试验结果,建立不同高温自然冷却后Q345钢材的概率S-N曲线模型,利用该模型可对火灾后Q345钢结构的疲劳性能进行有效评估。  相似文献   

19.
高强度螺栓连接是钢结构最常用的连接方式之一,其火灾后受力性能对整个结构灾后承载安全至关重要。通过对常用的8.8S和10.9S高强度螺栓进行高温过火冷却后力学性能试验研究,得到了过火温度对应力-应变关系曲线、屈服强度、抗拉强度和弹性模量的影响规律。试验包括自然冷却、泼水冷却两种冷却方式。研究结果表明:当过火温度超过400 ℃时,过火与冷却作用对高强度螺栓的力学性能将产生较大的影响;当过火温度超过700 ℃时,冷却方式对高强度螺栓的力学性能影响有较大的差别,在自然冷却条件下,延性不断加大,强度有略微回升,但幅度不明显;在泼水冷却的情况下,应力-应变曲线呈现明显脆性,塑性平台消失,强度大幅度回升,在过火温度超过800 ℃后10.9S高强度螺栓的强度甚至比未受火时提高约20%。  相似文献   

20.
This paper presents the experimental studies of axially loaded fire-resistant steel columns under elevated temperature. With the advancement of metal production, fire-resistant steel with enhanced mechanical properties at elevated temperatures has been developed recently. However, extensive research work is needed in order for the application of fire-resistant steel in building structures. In this study, a series of fire-resistant steel columns was loaded to their ultimate states at specified temperature. The effects of width-thickness ratios, slenderness ratios and residual stress on the performance of fire-resistant steel H-columns are examined. Based on this study, it is found that the section property of fire-resistant H-columns should be at least a non-compact section in order to prevent local buckling. Column strength is sensitive to slenderness ratio at elevated temperature. The strength of a slender column decreased sharply especially for temperatures above 600 °C. It is also found that the failure mode of steel columns changed from inelastic global buckling at room temperature to local buckling at elevated temperature, due to the release of residual stress in fire. An analytical model is proposed which is able to predict the behavior of fire-resistant steel H-columns under elevated temperature. Design guidelines are also proposed for the design of fire-resistant steel columns in fire conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号