首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High‐performance ZSM‐5 membranes with a low Si/Al ratio of 10.3 were prepared on cheap coarse macroporous α‐Al2O3 tubes by fluoride route without organic template. The effects of crystallization time and aluminum source on the growth, morphology and pervaporation (PV) performances of the as‐synthesized membranes were investigated. The feasibility of preparing ZSM‐5 membranes with different Si/Al ratio which was implemented by using different Al2(SO4)3·18H2O content in synthesis gel were discussed. It was found that the aluminum source had significant effect on the synthesis of membranes. The ZSM‐5 membranes prepared by using Al2(SO4)3·18H2O as an aluminum source from synthetic gel with composition of 1SiO2/0.05Al2O3/0.17Na2O/0.9NaF/45H2O showed high reproducibility and high PV performance with flux of 3.85 kg/(m2·h) and separation factor of higher than 10,000 in dehydration of 90 wt % i‐PrOH/H2O at 348 K. Moreover, the ZSM‐5 membranes exhibited high water perm‐selectivity performance for dehydration of 90 wt % n‐PrOH/H2O, n‐BtOH/H2O, and i‐BtOH/H2O mixtures, respectively. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2813–2824, 2016  相似文献   

2.
Composite materials containing Raney Ni and Cu‐ZSM‐5 are highly active catalysts for the selective catalytic reduction (SCR) of NO by NH3. Their catalytic properties were studied with particular attention to the influence of moisture and SO2 in the feed, and to effects of catalyst shaping operations. Composite materials (16–20 wt‐% zeolite) were prepared by mixing the components, with different degree of segregation in the resulting pressed particles, or by growing ZSM‐5 crystallites on the surface of leached Raney Ni, which were then exchanged with Cu ions. Catalytic tests were performed with 1000 ppm NO, 1000 ppm NH3, 2 % O2 in He, at 3–6.5 · 105 h–1 (related to zeolite component). With physical mixtures, the catalytic behaviour strongly depended on the mixing strategy, particles containing both Ni and zeolite being inferior to mixed Ni‐only and zeolite‐only particles. The SCR activity was promoted by 2 % H2O in the feed, SO2 (200 ppm) was a moderate poison at low temperatures, but indifferent or slightly promoting at high temperatures. A catalyst prepared from ZSM‐5 grown on Raney Ni, which was ranked intermediate in dry feed, was promoted to excellent performance in H2O and SO2 containing feed at T > 700 K and was stable for 38 h at 845 K. The results suggest that SCR catalysts containing highly active zeolites should be produced avoiding shaping operations e.g. by use of zeolite crystallites grown on wire packings.  相似文献   

3.
Boron‐substituted MFI (B‐ZSM‐5) zeolite membranes with high pervaporation (PV) performance were prepared onto seeded inexpensive macroporous α‐Al2O3 supports from dilute solution and explored for the separation of ethanol/water mixtures by PV. The effects of several parameters on microstructures and PV performance of the B‐ZSM‐5 membranes were examined systematically, including the seed size, synthesis temperature, crystallization time, B/Si ratio, H2O/SiO2 ratio and silica source. A continuous and compact B‐ZSM‐5 membrane was fabricated from solution containing 1 tetraethyl orthosilicate/0.2 tetrapropylammonium hydroxide/0.06 boric acid/600 H2O at 448 K for 24 h, showing a separation factor of 55 and a flux of 2.6 kg/m2 h along with high reproducibility for a 5 wt % ethanol/water mixture at 333 K. It was demonstrated that the incorporation of boron into mobile five (MFI) structure could increase the hydrophobicity of B‐ZSM‐5 membrane evidenced by the improved contact angle and amount of the adsorbed ethanol, and thus enhance the PV property for ethanol/water mixtures. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2447–2458, 2016  相似文献   

4.
Kinetic measurements of the selective catalytic reduction (SCR) of NO by methane were performed over CeO2/H‐ZSM‐5, In‐ZSM‐5, and CeO2/In‐ZSM‐5 catalysts. The parameter space covered NO, CH4, and O2 concentrations varying from 250 to 1000 ppm, from 500 to 2000 ppm, and from 0.5 to 10 vol.‐%, respectively, space velocities between 5000 and 90000 h–1 and temperatures between 573 and 873 K depending on the catalyst activities. With CeO2/In‐ZSM‐5 an additional series of measurements was performed with moistened feed gas (0.5–10 vol.‐% H2O). On the basis of a pseudo‐homogeneous, one‐dimensional fixed‐bed reactor model, the data were fitted to a kinetic model that includes power rate laws for the reduction of NO and for the unselective total oxidation of methane. From analyses of isothermal data sets, almost all reaction orders were found to vary significantly with changing temperature, which indicates that the simple kinetic model cannot reflect the complex reaction mechanism correctly. Nevertheless, the data measured with In‐ZSM‐5 could be modeled with good accuracy over a wide range of reaction temperatures (150 K) while the accuracy was less satisfactory with the remaining data sets, in particular for data with the moist feed over CeO2/In‐ZSM‐5. With the latter catalyst it was not possible to represent the data measured in dry and in moist feed in a single model even upon confinement to fixed reaction temperatures. A comparison of the separate models established showed strong changes in the reaction orders in the presence of water, which occur apparently already at a very low water content (≤ 0.5 vol.‐%). The kinetic parameters found are in agreement with earlier conclusions about the reaction mechanisms. With In‐ZSM‐5, both reaction orders and the activation energy show a rate‐limiting influence of NO oxidation on the NO reduction path which is removed by the presence of the CeO2 promoter. A difference in the reaction mechanism over CeO2/In‐ZSM‐5 and CeO2/H‐ZSM‐5 is reflected in different kinetic parameters. The differences of the kinetic parameters between dry‐feed and moist‐feed models for CeO2/In‐ZSM‐5 reflect adsorption competition between the reactants and water.  相似文献   

5.
Phosphate‐modified ZSM‐5 zeolites were studied by standard characterization techniques and solid‐state nuclear magnetic resonance spectroscopy, and in the methanol‐to‐olefin (MTO) conversion. Considering the physicochemical properties of the ZSM‐5 zeolites, the most important effects of the phosphate modification are a deposition of polyphosphates in the pore system and a decrease of the acid site density, but not of the acid site strength. The significant increase in the selectivity to C2 – C4 alkenes and the decrease of C5+ formation in the MTO reaction for a phosphate coverage of about 5 wt % are explained by extra‐framework phosphate species near the crossing intersections of the ZSM‐5 pore system, which hinder the formation of large intermediates and reaction products.  相似文献   

6.
This work proposed a synthesis route of ZSM‐5 via the hydrothermal method with premixing in a stirred tank reactor (STR). Effects of various operating conditions, including pre‐mixing time, molar ratio of SiO2/Al2O3, TPAOH (organic template agents) concentration, NaCl (alkali metal cations) concentration, crystallization temperature, and crystallization reaction time, on the average particle size (PS) and particle size distribution (PSD) were investigated. It was found that the pre‐mixing time in the STR significantly affect the formation of proto‐nuclei in premixing process and crystal growth in hydrothermal reaction process, and consequently influence the PS and PSD of the prepared ZSM‐5. ZSM‐5 with good thermal stability, a PS of 380 nm, PSD of 0.17–0.9 µm, pore diameter of 2.31 nm, pore volume of 0.19 cm3 · g?1 and specific surface area of 337.25 m2 · g?1 were obtained under the optimal conditions of a crystallization reaction time of 24 h, a crystallization temperature of 130 °C, a molar ratio of SiO2/Al2O3 of 200, a TPAOH concentration of 3.5 mol · L?1, NaCl concentration of 0.3 mol · L?1, and a pre‐mixing time of 5 h. This work indicated that the operating conditions including premixing time have a significant effect on its PS and PSD.  相似文献   

7.
The heterogeneous catalytic wet peroxide oxidation (CWPO), involving total oxidation of organic compounds to CO2 and H2O is a possible path for the treatment of toxic and bio‐refractory wastewater streams. The aim of this work was to synthesize and characterize three Cu/ZSM5 catalysts prepared by direct hydrothermal synthesis. The mass ratio of the active metal component in the zeolite ranged from 1.62–3.24 wt %. These materials were tested for CWPO of aqueous phenol in a stainless steel Parr reactor, in batch operation under mild conditions (at atmospheric pressure and a temperature of 353 K). The catalyst weight was 0.1 g dm–3 and the initial concentration of phenol and hydrogen peroxide were 0.01 mol dm–3 and 0.1 mol dm–3, respectively. The catalysts were characterized by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), AAS and ICP‐MS. Their catalytic performance was monitored in terms of phenol and total organic carbon (TOC) conversion, hydrogen peroxide decomposition, by‐product distribution and the degree of copper leached into the aqueous solution. The experimental results indicated that within 180 min, these catalysts facilitated almost complete elimination of phenol and a significant removal of chemical oxygen demand, without significant leaching of Cu ions from the zeolite. The Cu/ZSM5‐DHS3 catalyst with the highest copper loading was proven to be the best candidate. The useful fraction of hydrogen peroxide that contributed to the removal of the organic compounds quantified in terms of selectivity, S, indicated that the CWPO selectivity was always less than 100 %, which meant that there was some self‐degradation of oxidant. It was also shown that oxidation of phenol took place on the catalyst surface via a heterogeneous mechanism, and that the contribution of any homogeneous reaction mechanism was not significant.  相似文献   

8.
Crystalline mesoporous chromium oxide (P4VP–Cr2O3) was synthesized and used as carrier of metal (Cu, Mn, Co) oxides for benzene complete oxidation. Influence of the ceria promoter on catalytic performance of MnOx/P4VP–Cr2O3 was investigated. The results show that P4VP–Cr2O3 has abundant mesopores, which exhibits blocky morphology with crystal sizes ranging from 5 to 15 μm, giving a uniform pore size centered at 18.4 nm. P4VP–Cr2O3 exhibits a high degree of crystallinity, and active sites have been successfully loaded into P4VP–Cr2O3. Ceria promoter, smaller MnOx crystallites and strong interaction among the metal oxides are the key factors to enhance the catalytic activity.  相似文献   

9.
Organic/inorganic hybrid silica membranes were prepared from 1,1,3,3‐tetraethoxy‐1,3‐dimethyl disiloxane (TEDMDS) by the sol‐gel technique with firing at 300–550°C in N2. TEDMDS‐derived silica membranes showed high H2 permeance (0.3–1.1 × 10?6 mol m?2 s?1 Pa?1) with low H2/N2 (~10) and high H2/SF6 (~1200) perm‐selectivity, confirming successful tuning of micropore sizes larger than TEOS‐derived silica membranes. TEDMDS‐derived silica membranes prepared at 550°C in N2 increased gas permeances as well as pore sizes after air exposure at 450°C. TEDMDS had an advantage in tuning pore size by the “template” and “spacer” techniques, due to the pyrolysis of methyl groups in air and Si? O? Si bonding, respectively. For pore size evaluation of microporous membranes, normalized Knudsen‐based permeance, which was proposed based on the gas translation model and verified with permeance of zeolite membranes, reveals that pore sizes of TEDMDS membranes were successfully tuned in the range of 0.6–1.0 nm. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

10.
In order to fabricate hollow fiber mixed matrix membrane (HFMMM) for long‐term CO2 absorption process, ZSM‐5 (Zeolite Socony Mobil–5) zeolite was modified using hexadecyltrichlorosilane for increasing hydrophobicity and then added to the polyvinylidene fluoride (PVDF) spinning dope. The in‐house made HFMMMs were characterized in terms of gas permeance, overall porosity, average pore size, effective surface porosity, surface roughness, mechanical stability, and wetting resistance. The morphology of the HFMMMs was studied using SEM. The cross‐sectional SEM images indicated that the membrane structure has changed from sponge‐like to finger‐like by ZSM‐5 loading. The surface roughness increased by increasing ZSM‐5 concentration in the spinning dope. The HFMMM spun from the spinning dope with 0.5 wt % of ZSM‐5 zeolite showed that the CO2 absorption flux decreased 18.9% in the initial 115 h of the operation and then the absorption flux remained constant until the end of the operation. For plain PVDF HFM the absorption flux decreased 36% from the initial value in the first 15 h of the experiment. Thus it could be concluded that the long term stability of HFM was improved by the incorporation of ZSM‐5. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44606.  相似文献   

11.
The composite double‐layered films, for the packaging application of postharvest fruits and vegetables, were prepared by laminating low‐density polyethylene (LDPE) and poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) modified with zeolite ZSM‐5. The film was characterized by scanning electron microscope and differential scanning calorimeter and tested for permeation of ethylene (C2H4), oxygen (O2), carbon dioxide (CO2), and water vapor. It was found that the C2H4 permeability of the films was improved because of an enhanced adsorption of C2H4 by the incorporated zeolite (0–10 wt%). The preconcentrated layer (zeolite/SEBS) leads to a higher C2H4 concentration gradient across the film. Moreover, the high dispersion of zeolite increased the C2H4 permeation. When compared with O2 and CO2, the composite films were more selective to C2H4. However, the C2H4 permeation decreased in the presence of O2 because of a competitive adsorption. In addition, the films possessed appreciate tensile properties for packaging application. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

12.
BACKGROUND: The influence of technological parameters on the epoxidation of 1‐butene‐3‐ol (1B3O) over titanium silicalite TS‐2 catalyst has been investigated. Epoxidations were carried out using 30%(w/w) hydrogen peroxide at atmospheric pressure. The major product from the epoxidation of B3O was 1,2‐epoxybutane‐3‐ol, with many potential applications. RESULTS: The influence of temperature (20–60 °C), 1B3O/H2O2 molar ratio (1:1–5:1), methanol concentration (5–90%(w/w)), TS‐2 catalyst concentration (0.1–6.0%(w/w)) and reaction time (0.5–5.0 h) have been studied. CONCLUSION: The epoxidation process is most effective if conducted at a temperature of 20 °C, 1B3O/H2O2 molar ratio 1:1, methanol concentration (used as the solvent) 80%(w/w), catalyst concentration 5%(w/w) and reaction time 5 h. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
Understanding the effects of water vapor on gas permeation and separation properties of MFI zeolite membranes, especially at high temperatures, is important to the applications of these zeolite membranes for chemical reactions and separation involving water vapor. The effects of water vapor on H2 and CO2 permeation and separation properties of ZSM‐5 (Si/Al ~ 80) zeolite and aluminum‐free silicalite membranes were studied by comparing permeation properties of H2 and CO2 with the feed of equimolar H2/CO2 binary and H2/CO2/H2O ternary mixtures in 300–550°C. For both membranes, the presence of water vapor lowers H2 and CO2 permeance to the same extent, resulting in negligible effect on the H2/CO2 separation factor. The suppression effect of water vapor on H2 and CO2 permeation is larger for the less hydrophobic ZSM‐5 zeolite membrane than for the hydrophobic silicalite membrane, and, for both membranes, is stronger at lower temperatures and higher water vapor partial pressures. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

14.
Novel carbonized polydopamine adsorbents (C‐PDAs) with high surface area, high CO2 adsorption capacity and superior moisture resistance performance were prepared by one‐step synthesis method using polydopamine as carbon precursor at different KOH/C ratios, and then characterized. CO2 and water vapor adsorption performances of C‐PDAs were examined separately by static adsorption and fixed‐bed experiments. Results showed that BET area and pore volume of C‐PDA‐4 were up to 3342 m2/g and 2.01 cm3/g, respectively. Its CO2 adsorption capacity reached up to 30.5 mmol/g at 25 bar, much higher than many other adsorbents including metal‐organic frameworks (MOFs). C‐PDAs prepared with high KOH/C ratios had low surface element concentrations of O and N resulting in low surface hydrophilic property. H2O(g) isotherm of C‐PDA was much lower than those on Mg‐MOF‐74, Cu‐BTC, and MIL‐101(Cr). Fixed‐bed experiments showed that co‐presence of water vapor in feed stream with 30% RH had negligible impact on CO2 working capacity of C‐PDA. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3730–3738, 2016  相似文献   

15.
A thermodynamic calculation on the chemical vapor deposition of the SiCl4–NH3–CH4–H2–Ar system was performed using the FactSage thermochemical software databases. Predominant condensed phases at equilibrium were SiC, Si3N4, graphite, and Si. The equilibrium conditions for the deposition of condensed phases in this system were determined as a function of the deposition temperature, dilution ratio (δ), and reactant ratios of CH4/SiCl4 and NH3/SiCl4. The CVD phase diagrams were used to understand the reactions occurring during the formation of Si–C–N from the gas species and determine the area of SiC–Si3N4. The concentration of condensed‐phase products was used to determine the deposition conditions of CVD SiC–Si3N4. The present work was helpful for further experimental investigation on CVD Si–C–N.  相似文献   

16.
G. Kaur  S. Basu 《Fuel Cells》2014,14(6):1006-1013
Electro‐catalytic activity of Cu–Co/CeO2–YSZ anodes towards oxidation of H2 and n‐C4H10 fuels and carbon depositions are investigated using different Cu–Co loadings. Cu–Co/CeO2–YSZ anode based SOFCs with YSZ as electrolyte and LSM/YSZ as cathode were prepared by tape casting and wet impregnation methods and performance was analyzed using IV characteristics and impedance spectroscopy. The Cu–Co/CeO2–YSZ anodes with Cu–Co loading of 10, 15, and 25 wt.% produced power density of 60, 197, and 400 mW cm–2 in H2 and 190, 225, and 275 mW cm–2 in n‐C4H10 at 800 °C. The power density is increased with the increase in Cu–Co loading in Cu–Co/CeO2–YSZ anodes. The electrochemical impedance spectra shows less ohmic and polarization resistance for 25 wt.% Cu–Co loading in comparison to 10 and 15 wt.% Cu–Co. Scanning electron microscopy and high resolution transmission electron microscopy shows that the carbon fibers formed are hollow in nature with 70 nm size, whereas, thermal gravimetric analysis and X‐ray diffraction points out that they are amorphous in nature. The performance degradation of Cu–Co/CeO2–YSZ anodes in n‐C4H10 in 16 h is attributed to increasing amount of carbon deposition with time, which is contrary to our earlier observation in Cu‐Fe/CeO2–YSZ anode.  相似文献   

17.
The preparation, characterization, and gas permeation properties of novel composite membranes containing polyimide (PI), liquid sulfolane (SF), and zeolite (ZSM‐5) were investigated to address the interface defects between the PI and the zeolite. The free‐standing composite membranes were prepared by the solvent casting method. The gas permeability of the PI+ZSM‐5 membrane was higher than that of PI, whereas its gas selectivity was significantly reduced, suggesting that these results are attributed to the interface defects. The CO2 selectivity of PI+ZSM‐5+SF was higher than those of the PI+ZSM‐5 membranes because of the introduction of liquid SF into the interface defects. Furthermore, liquid SF enhanced the CO2/H2 selectivity near the recent upper bound. Therefore, the use of liquid SF could be an effective approach to preventing interface defects and increasing the CO2 selectivity, particularly for CO2/H2. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
In this study, one‐pot hydrothermal synthesis of sheet‐like ZSM‐5 as a high‐performance catalyst for toluene disproportionation was carried out using binary surfactants. In the dual template, tetraethylammonium hydroxide was used to construct the microporous structure of ZSM‐5, and cationic surfactant (e.g., octadecyltrimethylammonium chloride (C18TMAC), hexadecyltrimethyl ammonium bromide (C16TMAB), and tetradecyltrimethylammonium bromide, (C14TMAB)) can change the growth habits of the ZSM‐5 crystals by hindering the regular stacking of zeolite layers from their longer hydrophobic chain. From the XRD pattern of the as‐synthesized samples which were hydrothermally treated for different time, it was found that a lamellar mesostructured intermediate gradually transformed into the sheet‐like ZSM‐5 during hydrothermal process. With a proper amount of cationic surfactant, the thickness of the sheet‐like ZSM‐5 could be controlled to less than 30 nm. Concerning the catalyst application, the toluene disproportionation performance over the sheet‐like ZSM‐5 is 1.5 times higher than that of the commercial ZSM‐5. The higher conversion is ascribed to the faster diffusion amount due to the sheet‐like ZSM‐5.  相似文献   

19.
The chemical reactions in the SiCl4-Si-H2 system using a low temperature hydrogenation technique related to the Siemens process were studied based on thermodynamics. The diagrams of standard Gibbs free energy of formation and equilibrium constants for seven reactions used as a function of temperature in this system were calculated and plotted for a temperature range of 473 K to 1073 K. It showed that the lower the temperature, the larger the conversion ratio of SiCl4. The equilibrium composition of gaseous species in the SiCl4-Si-H2 system with different initial SiCl4/H2 ratio and systematic pressure was calculated and the corresponding conversion ratio of SiCl4 was obtained. The conversion ratio was improved by increasing the initial ratio of H2 in raw materials and the systematic pressure but was reduced with the increase of temperature. The conversion ratio of SiCl4 reached 0.41 with an initial SiCl4/H2 ratio of 1/5 and a systematic pressure of 5 MPa at 473 K.  相似文献   

20.
In order to study electrical properties, especially the electromagnetic interference (EMI) shielding property of ternary Ni‐P‐Cu plated polyether ether ketone/carbon fiber composites (CFs/PEEK) and their dependence on Cu content of the coating, electroless Ni‐P coating was first deposited on CFs/PEEK to obtain the optimum conditions for deposition rate, then a small quantity of CuSO4•5H2O (0.1∼0.4 g/L) was added in the electroless nickel‐based alloy plating (ENP) bath to investigate the influence of Cu content on the deposition rate and coating characterizations. The EMI shielding effectiveness (SE) was evaluated and corrosion resistance was characterized by electrochemical polarization measurement. It was found that coating phase change from amorphous to a mixture of amorphous and microcrystalline phases with the increase of Cu2+ concentration. Due to the neat morphology and uniform amorphous structure, the optimum coating Ni‐P‐2.2 wt% Cu obtained at the 0.2 g/L Cu2+ in the bath owns the best corrosion resistance, EMI SE and the lowest surface resistance. POLYM. COMPOS., 36:923–930, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号