首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 324 毫秒
1.
通过研究过量油酸钠的加入对磁流体中Fe3O4纳米颗粒表面包覆结构的影响来探讨油酸钠形成牢固双层包覆结构的条件。结果表明,在反应温度为80℃,反应时间为30min,反应pH-5的条件下,过量油酸钠在Fe3O4颗粒表面可以形成双层包覆结构,但第二层物理吸附层与第一层化学吸附层结合力低,极易脱落;Fe3O4颗粒表面包覆结构不随油酸钠加入量的改变而改变;随着油酸钠加入量的增加,油酸钠在Fe3O4颗粒表面的吸附量呈先增加后降低的变化规律。最后提出反应介质水的pH值是控制Fe3O4颗粒表面形成油酸钠双层包覆结构的关键因素。  相似文献   

2.
采用化学共沉淀法制备纳米Fe3O4磁性颗粒,并用油酸钠对其进行包覆改性,以煤油为基液制备出煤油基Fe3O4磁流体。对比分析了pH值=5和10.5条件下油酸钠包覆的Fe3O4磁性颗粒的性能差异,得出油酸钠在pH值=5时可以更好地包覆在Fe3O4磁性颗粒表面,其饱和磁化强度为58.0A·m2/kg,在此基础上制备出的磁流体的饱和磁化强度为20.2A·m2/kg,并且Fe3O4磁性颗粒分散较均匀。而油酸钠在pH值=10.5时包覆的Fe3O4磁性颗粒,其饱和磁化强度虽然高一些(67.8A·m2/kg),但制备出的磁流体稳定性较差,出现较为明显的沉降现象。  相似文献   

3.
采用化学共沉淀法制备了具有超顺磁性的纳米Fe3O4颗粒,并在清洗之后对其进行了双层包覆,首先用油酸钠进行第一层包覆,然后分别用聚乙二醇(PEG-)6000和十二烷基苯磺酸钠(SDBS)完成第二层包覆,从而得到了稳定的Fe3O4水基磁流体。分别用XRD、IR、TEM和VSM对所得产物进行了表征,探讨了表面活性剂包覆机理和加入时机。研究表明,所得磁流体具有良好的分散性和稳定性,未包覆的Fe3O4颗粒的饱和磁化强度为80.380emu/g,用油酸钠和PEG-6000双层包覆后的颗粒的饱和磁化强度达到60.529emu/g。以PEG-6000为外层包覆剂的磁流体的分散稳定性优于以SDBS为外层包覆剂的磁流体的分散稳定性。  相似文献   

4.
采用化学共沉淀法制备了Fe3O4纳米颗粒,以PEG-4000为表面活性剂进行表面修饰,制备了分散性良好的纳米Fe3O4磁流体.磁流体存在时,采用分散聚合法,以苯乙烯为单体制备了磁性高分子微球.TEM研究表明,Fe3O4纳米颗粒的平均粒径约为10nm,分散聚合所制备的磁性聚苯乙烯微球的平均粒径约为80nm;VSM研究表明,合成的Fe3O4纳米颗粒及磁性聚苯乙烯微球具有超顺磁性;FT-IR研究表明,Fe3O4纳米颗粒很好地包覆于聚苯乙烯中;XRD结果表明,分散聚合前后,Fe3O4纳米颗粒的晶体结构没有发生变化.  相似文献   

5.
为制备稳定的水基磁流体,分别以月桂酸、油酸钠、十二烷基苯磺酸钠作为外层表面活性剂,对包油酸的Fe3O4粒子进行了再包覆.将得到的双层包覆的Fe3O4粒子分别分散在水中,发现以十二烷基苯磺酸钠为外层表面活性剂的磁粒子制成的水分散液的稳定性最佳.利用IR研究其吸附机理,结果显示:内层的油酸通过化学键合吸附在磁粒子表面,外层的十二烷基苯磺酸钠通过物理作用吸附在包油酸的Fe3O4粒子表面.  相似文献   

6.
研究了无水乙醇洗涤次数对油酸包覆的Fe3O4磁性纳米颗粒表面包覆结构的影响。采用FT-IR和TGA联合表征了油酸包覆的Fe3O4磁性纳米颗粒经过无水乙醇洗涤前后表面包覆结构的变化,采用TEM观察了油酸包覆后Fe3O4磁性纳米颗粒的形貌。实验结果表明经过无水乙醇5次洗涤后,油酸包覆的Fe3O4磁性颗粒为双层包覆结构;经过无水乙醇20次洗涤后,无水乙醇将双层油酸包覆结构中的物理吸附层洗掉,造成双层油酸包覆的Fe3O4磁性颗粒演变为单层包覆结构。  相似文献   

7.
《中国粉体技术》2015,(5):83-86
采用化学共沉淀法制备粒径小于10 nm的油溶性Fe3O4纳米颗粒,对其结构和性能进行表征,并讨论氨水加入方式对Fe3O4纳米颗粒形貌和产率的影响。结果表明:油酸成功包覆在反尖晶石型Fe3O4纳米颗粒的表面,并使其在多种油性溶剂中具有良好的分散性能;磁滞回线显示制得的Fe3O4纳米颗粒具有良好的超顺磁性;氨水加入方式的改变对Fe3O4纳米颗粒的生长具有明显的影响,进而影响Fe3O4纳米颗粒的产率。  相似文献   

8.
采用化学共沉淀法制备了Fe3O4磁性纳米粒子。以油酸钠为基体的Fe3O4磁流体具有良好的分散效果。利用X衍射仪(XRD)和透射电镜(TEM)分别对磁性粒子的物相、结构及粒径进行了分析,证实其为纯相Fe3O4粒子且粒径约为8nm。采用振动样品磁强计(VSM)测得包覆油酸钠前后的Fe3O4粒子饱和磁化强度(Ms)分别为60...  相似文献   

9.
制备了尺寸为30nm,具有磁响应的单分散Fe3O4@SiO2/Au核壳纳米颗粒,并研究其光学性质。首先利用热分解法制备油酸修饰的Fe3O4纳米粒子,再用反相微乳法制备Fe3O4@SiO2纳米粒子,最后利用表面修饰的氨基还原性,获得Fe3O4@SiO2/Au核壳复合纳米颗粒。分别用TEM、XRD、Zeta电位与粒度分析仪对产物形貌、结构、表面电位和粒径分布进行表征,用紫外-可见分光光度计对光学性质进行了测试。  相似文献   

10.
以FeCl3、FeSO4为铁源,利用改进共沉淀法合成磁性纳米Fe3O4,在其制备的过程中加入水合肼充当还原剂和沉淀剂,采用3-氨丙基三乙氧基硅烷(APTES),通过硅烷化反应以化学键的方式结合Fe3O4纳米颗粒,获得表面氨基化的磁性Fe3O4纳米复合颗粒。并用XRD、IR、TEM、VSM等分析手段深入研究了APTES修饰前后磁性纳米颗粒结构和性能影响。结果表明APTES成功包覆到磁性纳米粒子表面,其包覆率为21%;磁性颗粒粒径为20nm,晶型为反立方尖晶石型;磁性颗粒具有很好的分散性,其磁化率为2.36×10-6,饱和磁化强度达60.8mT。  相似文献   

11.
Fe3O4 纳米复合粒子研究   总被引:17,自引:1,他引:16       下载免费PDF全文
制备了酞菁镍(N iPc) 2Fe3O4 纳米复合粒子, 研究了其化学稳定性和磁性能。结果表明,N iPc 在Fe3O4 纳米粒子表面形成了复合层, 并且它们之间形成了一定程度的化学键。N iPc 复合层可有效地保护Fe3O4 纳米粒子不被空气氧化, 显著提高了其抗氧化能力, 并降低了其矫顽力。   相似文献   

12.
用化学共沉淀法合成了Fe3O4纳米微粒,并用双层表面活性剂对其进行表面修饰,得到了以水和乙醇为分散介质的磁流体。在磁流体的存在下,用改进的乳液聚合方法合成了Fe3O4/聚苯乙烯磁性微球。X射线衍射研究表明,Fe3O4纳米微粒的平均粒径约为10 nm;在透射电镜下观察磁性微球的粒径在140 nm左右;并用红外光谱和热失重方法表征了复合微球的化学成分及其所含Fe3O4的百分数。阐述了双层表面活性剂改性的机理,并对聚合过程中单体、磁流体及引发剂的用量的影响进行了讨论。  相似文献   

13.
Fe3O4纳米粒子的制备与超顺磁性   总被引:3,自引:0,他引:3  
秦润华  姜炜  刘宏英  李凤生 《功能材料》2007,38(6):902-903,907
采用红外光谱、X射线衍射、透射电子显微镜和振动样品磁强计对用化学共沉淀法制备出的纳米Fe3O4粒子进行了形貌、结构及磁性能表征.其中,红外和XRD测试结果表明制备出的Fe3O4粒子的物态和晶相结构;透射电子显微镜照片表明制备出的纳米四氧化三铁成球性好,且大部分四氧化三铁粒子的粒径在10nm左右;磁化曲线表明制备出的Fe3O4粒子无剩磁和矫顽力,具有超顺磁性.并且,将制备出的纳米Fe3O4粒子和块状Fe3O4的磁性能进行对比,探讨了Fe3O4由块状的亚铁磁性向纳米级的超顺磁性转变的原因.  相似文献   

14.
讨论了一种制备磁性Fe3O4纳米颗粒的新方法,利用自行设计的反应容器,引入磁场和电场的相互作用,制得颗粒大小比较均一、分散性较好的Fe3O4纳米颗粒。通过改变反应时间、磁铁高度,得到了平均粒径为5~10nm的Fe3O4纳米颗粒,并对其进行磁特性测量。  相似文献   

15.
磁性羧甲基化壳聚糖纳米粒子的制备与表征   总被引:1,自引:1,他引:0  
以化学共沉淀法制备了Fe3O4纳米粒子,壳聚糖经羧甲基化改性后接枝在Fe3O4颗粒表面,得到了磁性羧甲基化壳聚糖(Fe3O4/CMC)纳米粒子.利用透射电镜(TEM)、X射线衍射(XRD)、傅立叶红外光谱(FT-IR)及磁性测试对产物进行了表征.TEM表明Fe3O4纳米粒子被CMC包覆,粒径约10 nm;XRD分析表明复合纳米粒子中磁性物质为Fe3O4;FT-IR表明壳聚糖发生羧甲基反应以及在Fe3O4表面的接枝反应.Fe3O4/CMC纳米粒子具有超顺磁性,比饱和磁化强度25.73 emu/g,有良好的磁稳定性.  相似文献   

16.
以聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段共聚物(PEO—PPO—PEO)作表面活性剂,采用纳米微乳液法还原Fe(Ⅱ)-乙酰丙酮化合物(Fe^Ⅱ(acac)2),制备粒径可控、单分散、水溶性Fe3O4纳米微粒,并进行了相关的表征测试。从傅里叶变换红外光谱(FTIR)中可以看出,共聚物PEO—PPO—PEO包裹在Fe3O4纳米微粒表面;透射电镜(TEM)显示纳米颗粒分散性好,呈球形;高斯拟合表明,不同物料配比合成的Fe3O4粒子大小、粒径分布不同;振动样品磁强计(VSM)测试说明,Fe3O4纳米颗粒室温下为超顺磁性或软铁磁性。由于PEO-PPO—PEO具有亲水性,PEO—PPO—PEO包裹的Fe3O4纳米微粒不用进一步处理即可转移到水相中,在生物和医学领域具有重要的潜在应用价值。  相似文献   

17.
以氨水作为沉淀剂并控制溶液的pH值,采用Fe3+和Fe2+共沉淀法制得了磁性四氧化三铁纳米颗粒。合成的磁性纳米颗粒通过高分辨透射电镜、X射线衍射仪、傅里叶变换红外光谱仪进行了表征。四氧化三铁纳米颗粒的粒径约为10nm,其表面含有丰富的羟基。为了增强磁性四氧化三铁纳米颗粒和聚合物基质之间的相互作用,在纳米颗粒的表面接枝上乙烯基单体。傅里叶变换红外光谱仪和热重分析仪的测试结果显示,聚合物链共价结合在纳米颗粒表面。表面接枝聚合后,四氧化三铁纳米颗粒由极性转变为非极性。  相似文献   

18.
采用电爆炸技术,合成了粒径约为70nm 的Ni纳米颗粒,以3-巯基丙基三甲氧基硅烷偶联剂(MPTS)对Ni颗粒进行表面改性,利用共沉淀法对改性Ni颗粒进行包覆得到核-壳结构的复合纳米颗粒。将获得的复合纳米颗粒作为微波吸收剂, 并以不同比例分散到热固性酚醛树脂中,涂刷在200mm×200mm的金属板上,用RAM反射率远场RCS测量法研究了微波吸收特性。研究表明,核-壳结构Fe3O4/Ni复合颗粒作为微波吸收剂,在相同质量比条件下,其微波吸收性能明显优于纯Ni纳米颗粒或Fe3O4纳米颗粒的情况,并且在Fe3O4/Ni核-壳结构复合纳米颗粒中随着镍含量的提高,微波吸收增强,而随着Fe3O4含量的增加,微波吸收频段向高频段移动。  相似文献   

19.
柠檬酸在磁性纳米粒子上的吸附及性能表征   总被引:7,自引:0,他引:7  
刘冰  王德平  黄文旵 《功能材料》2007,38(7):1074-1077
采用柠檬酸对Fe3O4磁性纳米粒子进行表面改性,制备了高稳定性的水基磁流体.利用衰减全反射红外光谱(ATR-FTIR)、热重分析(TG)、透射电镜(TEM)、X射线衍射(XRD)和振动样品磁强计(VSM)对改性前后的磁性粒子进行了表征.结果表明,柠檬酸在Fe3O4表面的吸附是氢键、静电力和共价键共同作用的结果,pH为4.8时化学吸附达到最大,符合Langmuir等温吸附,建立了等温吸附方程,饱和吸附量为100mg/g.  相似文献   

20.
采用化学共沉淀法制备纳米四氧化三铁,选用曲拉通X-100为分散剂,利用静电纺丝法制备PAN/Fe3O4磁性纳米复合材料。X射线衍射仪(XRD)验证了四氧化三铁在复合纳米纤维中的存在。同时使用扫描电镜(SEM)和透射电镜(TEM)对复合纳米纤维的微观形貌和Fe3O4在纤维中的分布进行了观察,利用热重(TGA)对纳米复合材料的热稳定性进行分析;通过磁性实验分析了纳米复合材料的磁性性能。结果表明,所制备PAN/Fe3O4磁性纳米纤维成型良好,且Fe3O4磁性颗粒在纤维中分散均匀,其与PAN是物理复合。纳米复合材料具有一定磁性,并可由磁性颗粒的加入量进行控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号