首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrochemical synthesis of polyaniline (PANI) on aluminum electrode from aqueous solution of 0.25 mol dm−3 aniline and 0.2 mol dm−3 sodium benzoate has been investigated under potentiodynamic and galvanostatic conditions. Initial corrosion behavior of aluminum and PANI coated aluminum electrode exposed to 3% NaCl has been investigated using electrochemical potentiodynamic and impedance spectroscopy technique (EIS). It was shown that PANI coating initially provide corrosion protection of aluminum, decreasing the corrosion current density at least 15 times.  相似文献   

2.
A novel electrode material was obtained at an aluminum electrode (Al) by a simple electroless method including two consecutive procedures: (i) the electroless deposition of metallic palladium on the Al electrode surface from PdCl2 + 25% ammonia solution and (ii) the chemical transformation of deposited palladium to the palladium hexacyanoferrate (PdHCF) films in a solution containing 0.5 M K3[Fe(CN)6]. The modified Al electrode demonstrated a well-behaved redox couple due to the redox reaction of the PdHCF film. The PdHCF film showed an excellent electrocatalytic activity toward the oxidation of dopamine (DA). The effect of solution pH on the voltammetric response of DA has been investigated. A linear calibration graph was obtained over the DA concentration range 2-51 mM. The rate constant k and transfer coefficient α for the catalytic reaction and the diffusion coefficient of DA in the solution D, were found to be 4.67 × 102 M−1 s−1, 0.63 and 2.5 × 10−6 cm2 s−1, respectively. The interference of ascorbic acid was investigated and greatly reduced using a thin film of Nafion on the modified electrode. The modified electrode indicated reproducible behavior and a high level stability during electrochemical experiments, making it particularly suitable for the analytical purposes.  相似文献   

3.
The surface of an aluminum (Al) electrode was modified with a thin film of nickel hexacyanoruthenate (NiHCR) as a novel electrode material. The modification procedure of Al surface, includes two consecutive procedures: (i) the electroless deposition of metallic nickel on the Al electrode surface from NiCl2 solution, and (ii) the chemical transformation of deposited nickel to nickel hexacyanoruthenate films in solution of 20 mM K3[Ru(CN)6] + 0.5 M KNO3. Cyclic voltammogram of the modified Al electrode showed a well-defined redox reaction due to [NiIIRuIII/II(CN)6]1−/2− system. The effects of different supporting electrolytes and solution pH were studied on the electrochemical characteristics of the modified electrode. The diffusion coefficients of K+ and Na+ cations in the film (D), the transfer coefficient (α), and the charge transfer rate constant at the modifying film/electrode interface (ks), were calculated in the presence of both K+ and Na+ cations. The stability of the modified electrode was investigated under various experimental conditions.  相似文献   

4.
This work studies the effect of three additives, sodium lauryl sulfate (SLS), cetyltrimethylammonium bromide (CTABr) and arabic gum (AG) on zinc electrowinning on aluminum in a solution of 85 g L−1 Zn(II) (1.3 M) in 108 g L−1 H2SO4 (1.1 M). The influence of these three additives is analyzed during the different stages of the reduction process using chronopotentiometric techniques on an aluminum rotating disk electrode (RDE). Potential ranges (−1.05 < E < −0.85 V versus SHE) and current density (−51 < i < −0.2 mA cm−2) within which zinc electrodeposition takes place in the presence of the three different additives were established. These parameters were used to determine current efficiencies (Φ), evaluated by electrolysis on an aluminum rotating cylinder electrode (RCE); the zinc deposition efficiency in the presence of SLS, CTABr and AG, was 95%, 96% and 99%, respectively, were all greater than the efficiency obtained without any additive (WA), Φ = 84%. The homogeneity of the deposits at the end of electrolyses implied that the (RCE) promotes uniform current density on the electrode surface and, hence, can be considered a model cell to evaluate current efficiencies.  相似文献   

5.
Electrochemical deposition of polyaniline (PANI) is carried out on a porous carbon substrate for supercapacitor studies. The effect of substrate is studied by comparing the results obtained using platinum, stainless steel and porous carbon substrates. PANI deposited at 100 mV s−1 sweep rate by potentiodynamic technique on porous carbon substrate is found to possess superior capacitance properties. Experimental variables, namely, concentrations of aniline monomer and H2SO4 supporting electrolyte are varied and arrived at the optimum concentrations to obtain a maximum capacitance of PANI. Low concentrations of both aniline and H2SO4, which produce PANI at low rates, are desirable. The PANI deposits prepared under these conditions possess network morphology of nanofibrils. Capacitance values as high as 1600 F g−1 are obtained and PANI coated carbon electrodes facilitate charge-discharge current densities as high as 45 mA cm−2 (19.8 A g−1). Electrodes are found to be fairly stable over a long cycle-life, although there is some capacitance loss during the initial stages of cycling.  相似文献   

6.
Chemical anchoring of silica nanoparticles onto polyaniline (PANI) chains was conducted through electro-co-polymerization of aniline and N-substituted aniline grafted on surfaces of silica nanoparticles. The grafting of N-substituted aniline on surfaces of silica nanoparticles were realized through hydrolysis of triethoxysilylmethyl N-substituted aniline (ND42) and the following condensation reaction with silanol groups on surfaces of SiO2. Organic-inorganic interactions between PANI and SiO2 involved in electro-co-polymerization process pushed the polymer chains apart and so facilitated the 1D growth of the polymer. Hence, the obtained hybrid film PANI/ND42-SiO2 displayed nano-fibrous morphologies (ca. 50 nm in diameter). Consequently, PANI/ND42-SiO2 exhibited an average specific capacitance of 380 F g−1, ca. 40% higher than that of PANI/SiO2 (276 F g−1). The hybrid film also showed improved cyclic stability.  相似文献   

7.
Aniline doped with polyvinyl sulphonate (PV-SO3) was electropolymerised on screen printed carbon (SPCE) and glassy carbon (GCE) electrodes. Then nano-structured polystyrene (PSNP) latex beads functionalised with amine (PSNP-NH2) and sulphate (PSNP-OSO3) were self-assembled on the modified SPCE and GCE. The resultant polyaniline nanocomposites (PANI|PSNP-NH2 or PANI|PSNP-OSO3) were characterised by cyclic voltammetry (CV), UV-vis spectroscopy and scanning electron microscopy (SEM). Brown-Anson analysis of the multi-scan rate CV responses of the various PANI films gave surface concentrations of the order of 10−8 mol cm−2. UV-vis spectra of the PANI films dissolved in dimethyl sulphoxide showed typical strong absorbance maxima at 480 and 740 nm associated with benzenoid π-π* transition and quinoid excitons of polyaniline, respectively. The SEM images of the PANI nanocomposite films showed cauliflower-like structures that are <100 nm in diameter. When applied as electrochemical nitrite sensor, sensitivity values of 60, 40 and 30 μA/mM were obtained for electrode systems containing PANI|PSNP-NH2, PANI and PANI|PSNP-SO3, respectively. The corresponding limits of detection of the sensors were 7.4, 9.2 and 38.2 μM NO2.  相似文献   

8.
Polyaniline (PANI)/polysulfone (PSF) composite films with asymmetric porous structure were successfully prepared by electropolymerization. The back face (in contact with the electrode) of the freestanding composite film is green while the outer face is white. The chemical component and the morphology of the surfaces were characterized by FTIR spectra and scanning electron microscopy, respectively. It was shown that replicate films gave reproducible voltammetry in 0.5 M H2SO4. The influence of the electrolyte and the acidic concentration on the redox peak currents of polyaniline were investigated in detail. The composite film electrode showed good electrocatalytic activity for ascorbic acid, which the anodic overpotential was evidently reduced compared with that obtained at bare Pt electrode. The diffusion coefficient of ascorbic acid was 1.38 × 10−6 cm2 s−1.  相似文献   

9.
Liang Ding 《Electrochimica acta》2010,55(28):8471-8475
The electrocatalytic reduction of bromate ion (BrO3) was investigated in a three-electrode system using polyaniline (PANI) as the electrode material. Bromate ion reduction and Br removal were observed during electrochemical treatment because of the catalytic and doping capabilities of the PANI film. BrO3 removal efficiency in the 0.10 mol L−1 Na2SO4 supporting electrolyte achieved 99% at pH 7 in 25 min, with no bromide ion detected in the solution. Optimal removal was found in pH range 6-7, and the pH of the solution had a significant impact on bromate reduction. A reduction mechanism was also discussed by analyzing the cyclic voltammograms of the reduction process and X-ray photoelectron spectra of the main elements (N 1s and Br 3d) on the PANI surface. We propose that during the electrocatalytic reduction process, bromate is reduced to bromide because of the loss of electrons from the nitrogen atoms on the PANI chains. The doping of the resultant Br ions in the PANI film has an important role in avoiding further oxidation of Br to BrO3. The used PANI film can be regenerated by de-doping the Br ions with a 0.5 mol L−1 H2SO4 solution. Thus the process can be considered efficient and green.  相似文献   

10.
Porous-polyaniline coated Pt electrode (PANI/Pt) was electro-synthesized potentiodynamically in 0.1 M aniline + 0.5 M H2SO4 and morphologically characterized by scanning electron microscopy (SEM). Nature of predominant Fe-species in HCl and H2SO4 was checked by UV-vis spectrophotometry. Electrocatalysis of Fe(III)/Fe(II) reaction was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) for three different solution compositions viz. (i) FeCl3/FeCl2 in 1 M HCl, (ii) FeCl3/FeCl2 in 0.5 M H2SO4 and (iii) Fe2(SO4)3/FeSO4 in 0.5 M H2SO4. For different thicknesses of PANI, the peak current increased irrespective of the nature of the Fe-species, but the polarity of the charge on the Fe-species showed great influence on reversibility of electrocatalysis by PANI/Pt. The Donnan interaction of the polyaniline modified electrode for the three compositions was investigated with respect to [Fe(CN)6]3−/H2[Fe(CN)6]2− which are believed to be the predominant species present in K3[Fe(CN)6]/K4[Fe(CN)6] solution in 0.5 M H2SO4. The electrocatalytic performance of PANI/Pt for Fe(III)/Fe(II) redox reaction was found superior in HCl compared to that in H2SO4.  相似文献   

11.
Jun Yan  Bo Shao  Weizhong Qian  Fei Wei 《Carbon》2010,48(2):487-784
A graphene nanosheet (GNS)/polyaniline (PANI) composite was synthesized using in situ polymerization. The morphology and microstructure of samples were examined by scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. Electrochemical properties were characterized by cyclic voltammetry (CV) and galvanostatic charge/discharge. GNS as a support material could provide more active sites for nucleation of PANI as well as excellent electron transfer path. The GNS was homogeneously coated on both surfaces with PANI nanoparticles (∼2 nm), and a high specific capacitance of 1046 F g−1 (based on GNS/PANI composite) was obtained at a scan rate of 1 mV s−1 compared to 115 F g−1 for pure PANI. In addition, the energy density of GNS/PANI composite could reach 39 W h kg−1 at a power density of 70 kW kg−1.  相似文献   

12.
Polyaniline (PANI) (emeraldine) base has been exposed to iodine in an ethanol-water suspension. The conductivity of PANI increased from 10−9 S cm−1 to 10−4 S cm−1 already at the molar ratio [I2]/[PANI] = 1, and a higher content of iodine had only a marginal effect. This is the result of the protonation of PANI base with hydriodic acid, which is a by-product of the oxidation of the emeraldine form of PANI to pernigraniline constitutional units. The reaction is discussed on the basis of FTIR spectra. An alternative reaction, a ring-iodination of PANI, is marginal. Only one iodine atom substitutes a hydrogen atom in about 12 aniline units, even at high iodine concentration, [I2]/[PANI] = 8. The film of polyaniline base can be used in sensing iodine; after exposure to the iodine vapor, the conductivity of the polyaniline film increased.  相似文献   

13.
This study uses rotating ring-disk electrode (RRDE) and linear sweep voltammetry (LSV) to characterize oxygen reduction kinetics in alkaline solution on platinum electrodes with various thickness of hydrous oxide (oxyhydroxy) film. Oxyhydroxy films are created on Pt electrodes by pretreatment in 1.0 mol dm−3 KOH at a constant voltage. The pretreatment voltage ranges from −1.2 to 1.0 V and is increased stepwise before each new experimental run to produce seven discreet films. LSV plots show oxyhydroxy film thickness strongly inhibits oxygen reduction and is inversely proportional to RRDE oxygen reduction current ID for LSV voltages ED from −0.1 to −0.46 V, but this trend reverses at ED more negative than −0.46 V so that the worst-performing electrode becomes the best. However, this improvement disappears at around −0.8 V, suggesting this change involves a negatively charged ion, possibly embedded into the metal in the top few atomic layers either interstitially or substitutionally. The 1.0 V-pretreated electrode in the ED range from −0.46 to −0.9 V of highest oxygen reduction current also exhibits the lowest hydrogen peroxide production, with zero H2O2 produced at −0.6 V, indicating the brief presence of the oxyhydroxy film on the Pt surface has strong lingering effects. The post-oxyhydroxy Pt surface is very different than the native Pt for oxygen reduction pathway and efficiency. Reaction order with respect to oxygen is close to 1. The rate constants of the direct O2 to H2O electroreduction reaction are increased with decreasing the potential from −0.2 to −0.6 V, but the O2 to H2O2 electroreduction is contrary to this expectation. The rate constants of H2O2 decomposition on the oxyhydroxy film-covered Pt electrode are near constant around 1 × 10−4 cm s−1 at ED > −0.5 V.  相似文献   

14.
Fang Ye  Lishi Wang 《Electrochimica acta》2008,53(12):4156-4160
5-[o-(4-Bromine amyloxy)phenyl]-10,15,20-triphenylporphrin (o-BrPETPP) was electropolymerized on a glassy carbon electrode (GCE), and the electrocatalytic properties of the prepared film electrode response to dopamine (DA) oxidation were investigated. A stable o-BrPETPP film was formed on the GCE under ultrasonic irradiation through a potentiodynamic process in 0.1 M H2SO4 between −1.1 V and 2.2 V versus a saturated calomel electrode (SCE) at a scan rate of 0.1 V s−1. The film electrode showed high selectivity for DA in the presence of ascorbic acid (AA) and uric acid (UA), and a 6-fold greater sensitivity to DA than that of the bare GCE. In the 0.05 mol L−1 phosphate buffer (pH 6.0), there was a linear relationship between the oxidation current and the concentration of DA solution in the range of 5 × 10−7 mol L−1 to 3 × 10−5 mol L−1. The electrode had a detection limit of 6.0 × 10−8 mol L−1(S/N = 3) when the differential pulse voltammetric (DPV) method was used. In addition, the charge transfer rate constant k = 0.0703 cm s−1, the transfer coefficient α = 0.709, the electron number involved in the rate determining step nα = 0.952, and the diffusion coefficient Do = 3.54  10−5 cm2 s−1 were determined. The o-BrPETPP film electrode provides high stability, sensitivity, and selectivity for DA oxidation.  相似文献   

15.
In this work, SiO2/Sb2O3 prepared by the sol-gel processing method, having a specific surface area, SBET, of 790 m2 g−1, an average pore diameter of 1.9 nm and 4.7 wt.% of Sb, was used as substrate base for immobilization of the 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine ion. Cobalt(II) ion was inserted into the porphyrin ring with a yield of complex bonded to the substrate surface of 59.4 μ mol g−1. A carbon paste electrode of this material was used to study, by linear sweeping voltammetric and chronoamperometric techniques, the electrocatalytic reduction of dissolved oxygen. The reduction, at the electrode solid-solution interface, occurred at −0.25 V versus SCE in 1.0 mol l−1 KCl solution, pH 5.5, by a four electron mechanism. The electrode response was invariant under various oxidation-reduction cycles showing that the system is chemically very stable. Such characteristics allowed the study of the electrode response towards various dissolved oxygen concentrations using the chronoamperometry technique. The cathodic peak current intensities plotted against O2 concentrations, between 1.0 and 12.8 mg l−1, showed a linear correlation. The electrode response time was very fast, i.e. about 1 s. This study was extended using the electrode to determine the concentration of dissolved oxygen in sea water samples.  相似文献   

16.
A multiwall carbon nanotubes (MWNTs)-chitosan modified glassy carbon electrode (GCE) exhibits attractive ability for highly sensitive cathodic stripping voltammetric measurements of bromide (Br). In pH 1.8 H2SO4 solution, a substantial increase in the stripping peak current of Br (compared to bare GCE and chitosan modified GCE) is observed using MWNTs-chitosan modified electrode. Operational parameters were optimized and the electrochemical behaviors of Br were studied by different electrochemical methods. The kinetics parameters were measured, the number of electron transfer (n) was 1 and the transfer coefficient (α) is 0.17. A wide linear calibration range (3.6 × 10−7-1.4 × 10−5 g mL−1) was achieved, with a detection limit of 9.6 × 10−8 g mL−1. The mechanism of electrode reaction was fully discussed.  相似文献   

17.
Distortions of high-frequency parts of impedance spectra of conducting polyaniline, PANI, film modified Pt electrodes in 0.5 and 0.05 mol dm−3 H2SO4 are analysed in terms of overlapping between impedance of PANI film working electrode (WE) branch and artefact impedance(s) induced by measurements in two-electrode (symmetrical, PANI versus PANI and asymmetrical, PANI versus platinised Pt) and three-electrode (with conventional reference (RE) and pseudo-reference (PRE) electrode) cells. In impedance measurements with both two-electrode cell configurations and PANI film WE at equilibrium, high-frequency distortions are generated by contribution of inductive impedance originating from instruments and wirings. Extent of distortions is found inversely proportional to the solution resistance term. In impedance measurements with conventional three-electrode cell configuration and PANI film WE kept at polarized conditions, relatively high extent of high-frequency distortions is generated by couplings between three electrodes of similar impedances. Distortions are manifested as inductive/capacitive artefact impedance, with lower inductivity and higher capacity for lower solution resistance and vice versa. Low impedance PRE is found useful for simultaneous diminishing of inductive and capacitive artefact impedances, what in some conditions could result with impedance spectra showing minor high-frequency distortions. Use of proper transfer function(s) with impedance of experimental artefacts involved, is in all cases found essential not only for determination of all parameters characterizing fast impedance response of PANI film WE, but for highlighting physical origins and possible ways of control of the content of experimental artefacts in measured impedance spectra too.  相似文献   

18.
Hydrolytic lignin (HL) was adsorbed from an aqueous/organic solution on bare and iodine-modified gold electrode. Subsequent electrooxidation of the lignin adsorbate generated redox-active quinone-based groups in the biopolymer structure, exhibiting high reversibility during potential cycling and fast electron transfer kinetics. The presence of the chemisorbed iodine layer on the supporting gold electrode had a pronounced effect on the electrochemical properties of the final modified electrode in terms of double-layer capacitance (Cdl) and the observed surface coverage (Γobs). The high electrochemical activity in connection with low Cdl made it possible to apply the Au|I(ads)|HL electrode as a fast-responding and sensitive electrochemical sensor for NADH. When tested in the amperometric mode at a constant potential of +0.4 V vs. Ag/AgCl, the modified electrode showed a linear current-concentration response over the range of 5-120 μM with a sensitivity of 2.39 nA μM−1 cm−2 and a detection limit of 1.0 μM (S/N = 3). Kinetic studies using the rotating disk electrode revealed that the mediated oxidation of NADH on the Au|I(ads)|HL electrode was limited by the second order reaction of the analyte molecules with o-quinone moieties with a rate constant of ca. 4.7 × 102 M−1 s−1 (CNADH → 0). The modified electrode showed high resistivity against fouling and retained ca. 65% activity after storage in phosphate buffer (pH 7.4) at room temperature for 1 week.  相似文献   

19.
A cuprous oxide (Cu2O) nanoparticles modified Pt rotating ring-disk electrode (RRDE) was successfully fabricated, and the electrocatalytic determination of p-nitrophenol (PNP) using this electrode was developed. Cu2O nanoparticles were obtained by reducing the copper-citrate complex with hydrazine hydrate (N2H4·H2O) in a template-free process. The hydrodynamic differential pulse voltammetry (HDPV) technique was applied for in situ monitor the photoelectrochemical behavior of PNP under visible light using nano-Cu2O modified Pt RRDE as working electrode. PNP undergoes photoelectrocatalytic degradation on nano-Cu2O modified disk to give electroactive p-hydroxylamino phenol species which is compulsive transported and can only be detected at ring electrode at around 0.05 V with oxidation signal. The effects of illumination time, applied bias potential, rotation rates and pH of the reaction medium have been discussed. Under optimized conditions for electrocatalytic determination, the anodic current is linear with PNP concentration in the range of 1.0 × 10−5 to 1.0 × 10−3 M, with a detection limit of 1.0 × 10−7 M and good precision (RSD = 2.8%, n = 10). The detection limit could be improved to 1.0 × 10−8 M by given illumination time. The proposed nano-Cu2O modified RRDE can be potentially applied for electrochemical detection of p-nitrophenol. And it also indicated that modified RRDE technique is a promising way for photoelecrocatalytic degradation and mechanism analysis of organic pollutants.  相似文献   

20.
Hao Yu 《Electrochimica acta》2007,52(13):4403-4410
The gallium hexacyanoferrate (GaHCF) was synthesized chemically and characterized by FTIR technique. Its electrochemical behavior was carefully investigated by fabricating a GaHCF modified carbon paste electrode in various supporting electrolyte. The experimental results showed that in KNO3, K2SO4, KCl and other supporting electrolyte, GaHCF yielded one pair of ill-defined redox waves with a formal potential of 0.9 V (versus SCE). In 0.050 mol L−1 phosphate buffer solution (PBS, pH 6.8), however, GaHCF yielded one pair of well-defined redox peaks with a formal potential of 0.222 V. Furthermore, this modified electrode exhibited a high electrocatalytic activity toward the reduction of H2O2 in pH 6.8 PBS, with over-potential dramatically lower than that of on the bare carbon paste electrode. Amperometry was used for the determination of H2O2, under the optimal conditions, a linear dependence of the catalytic current versus H2O2 concentration was obtained in the range of 4.9 × 10−6 to 4.0 × 10−4 mol L−1 with a detection limit of 1 × 10−6 mol L−1 when the signal-to-noise ratio was 3, and a sensitivity of 27.9 μA mM−1 (correlation coefficient of 0.997). Chronoamperometry was used to conveniently determine the diffusion coefficient of H2O2 in the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号