首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
地铁区间隧道火灾通风模式的数值分析   总被引:1,自引:0,他引:1  
介绍了地铁区间隧道火灾常见的几种通风排烟模式,对其中一种最复杂的模式进行了数值分析。模拟分析得出,对于地铁实际工程中的单线盾构圆形隧道,在10 MW火灾强度下,着火区间隧道内2.6~2.9 m/s左右的纵向风速可以有效阻止烟气发生逆流;在着火区间隧道2.9 m/s的纵向风速下,未着火区间隧道两端对送送风速度为1~1.5 m/s时,联络通道内有风速为6 m/s左右的气流流向着火区间隧道,可有效抑制烟气通过联络通道向未着火区间隧道蔓延,保证人员的安全疏散。  相似文献   

2.
建立地铁区间通风及防排烟模型,分析取消地铁联络通道防火门对区间正常运营环境和火灾烟气控制的影响规律。结果表明:取消地铁区间联络通道防火门对区间正常运营的平均环境温度影响很小,约为0.3%~1%。取消防火门降低了区间排烟风速,但通过制定合理的烟气控制模式,仍可满足区间纵向临界风速的要求。基于环境控制理论,取消地铁区间联络通道防火门是可行的。  相似文献   

3.
雀儿山隧道为高海拔双向行车公路隧道,发生火灾后需要兼顾火灾点两侧人员的疏散,烟气控制较单向行车隧道复杂。采用FDS软件对雀儿山隧道进行火灾三维数值模拟,研究了高海拔双向行车公路隧道火灾时的烟气流动规律和能见度分布规律。研究结果表明:高海拔隧道火灾烟气流动比低海拔隧道速度快;纵坡隧道发生火灾时,若不采取任何控烟措施,烟流在火风压效应的作用下会从高洞口排出,而烟流沿下坡方向的蔓延距离仅在10 m左右,火灾烟气沿火灾点两侧蔓延极不对称;当隧道高洞口控制风速过大或横通道内控制风速过小时,易出现烟气蔓延对称性不佳或烟气窜入横通道,故二者应合理取值;当隧道高洞口施加0.5 m/s的风速、横通道施加1.0 m/s的风速时,烟气在火灾点两侧基本呈对称蔓延,且火灾两侧的能见度也基本对称;建议类似于依托工程的单洞双向行车公路隧道火灾疏散救援阶段,隧道高洞口风速控制在0.5 m/s左右、横通道内风速控制在1.0 m/s左右,以利于人员逃生。  相似文献   

4.
利用PHOENICS模拟了两种纵向风速下隧道内火灾烟气的发展情况,分析了人员疏散方向离火源点不同距离处烟气的温度和浓度分布。提出了利用联络通道来疏散部分人群的方法,得出了使联络通道内无烟的纵向通风速度,为提出全面的地铁区问隧道火灾人员疏散模式提供有益参考。  相似文献   

5.
地铁隧道火灾人员疏散与烟气控制   总被引:10,自引:2,他引:10  
在分析目前国内外地铁隧道火灾人员疏散方式的基础上,建议采用提高疏散效率且基本不增加投资的侧向疏散平台加联络通道的疏散方式,同时分析了隧道烟气控制的有关因素,给出了典型隧道烟气控制的临界风速(危急空气流速)。  相似文献   

6.
摘 要:为了解决特长海底隧道发生火灾时的排烟问题,提出利用服务通道和联络横通道辅助送风的通风方案。利用火灾动力学模拟软件(FDS),建立隧道火灾通风模型,通过研究通风排烟时服务隧道内补风量与横通道开启数量对火灾烟气的控制效果,确定通风系统的技术参数。结果表明:火灾发生时,事故隧道内纵向通风风速2 m/s,同时开启火源上游3 个横通道,并在服务隧道两端各施加1.3 m/s 纵向通风风速,既可将烟气控制在火源一侧,同时不影响人员安全疏散,其控烟效果与通风网络解算结果一致。采用横通道辅助送风的通风方案,控制特长海底隧道内火灾烟气蔓延是具有理论可行性的。  相似文献   

7.
地铁作为人员高度密集的地下公共场所,一旦发生火灾事故,人员易受到火灾高温烟气的不利影响导致中毒进而发生伤亡。本文针对地铁超长区间隧道人员安全疏散的难题,开展了高压细水雾在地铁区间隧道火灾下分隔有毒烟雾以保障人员安全逃生的研究。通过建立1∶2.5的缩尺度区间隧道火灾试验模型,设置多种着火工况,比较高压细水雾系统在不同风速、不同喷雾强度、不同喷头工作压力下的隔烟、消烟效果,并以烟气蔓延情况和有毒气体(CO)浓度作为主要标准进行评判。结果表明,环状设置的高压细水雾形成雾幕有效隔离和消减区间隧道火灾有毒烟气,在区间隧道人员逃生路径上形成“准安全区”,为人员疏散创造有利的安全环境。  相似文献   

8.
石芳 《消防科学与技术》2012,31(10):1047-1049
以某地铁过江隧道为研究对象,分析长大区间在火灾烟气控制及安全疏散方面的设计难点,对隧道横断面、疏散路径、通风系统等提出设计方案,通过设定相应的火灾场景及疏散场景,对火灾特性、烟气蔓延、人员疏散等进行模拟,探讨火灾烟气控制及安全疏散设计方案的可行性。  相似文献   

9.
地铁站厅至站台楼梯口风速对火灾烟气运动的影响   总被引:1,自引:0,他引:1  
地铁车站站台发生火灾,连接站厅与站台的楼梯口保持一定风速,可阻挡烟气向站厅蔓延并为人员疏散提供诱导气流。为研究楼梯口风速对车站火灾烟气运动的影响,试验对不同排烟模式下楼梯口风速进行测量,建立数值计算模型进行模拟。结果表明:火灾场景下楼梯口风速大于无火源场景下风速,因此常规楼梯口风速校核设计方法由于没考虑真实火灾情况下各种因素的复杂作用,需进一步改进;楼梯口附近起火,烟气易从挡烟垂壁溢出向站厅层蔓延,站台火灾时站厅层为送风状态,存在溢出烟气时站厅层烟浓度可增至大于站台层;站台公共区着火,增开隧道风机,能够增  相似文献   

10.
介绍了近年来国内外典型公路隧道火灾案例,阐明了隧道火灾的特点及危害。分析了火灾条件下公路隧道的结构损伤情况,提出相应的防火保护措施。介绍了隧道火灾中烟气的蔓延规律,由此引出目前国内外普遍采用的两种隧道火灾排烟模式并进行对比分析,对不同火灾功率条件下的临界风速和诱导风速进行合理取值。初步探讨了人员逃生中疏散救援通道的设置方式,包括疏散通道的构成方式及人(车)行横通道的合理间距。  相似文献   

11.
以某城市地下双层异形交通隧道为典型案例,按照车辆发生火灾的区域将隧道火灾划分为6种火灾场景。运用FDS模拟排烟失效与3m/s风速下的烟气蔓延状况,得到人员疏散可用时间。利用Pathfinder对逃生门洞的设置间距进行数值计算,得到人员疏散必需时间。将可用疏散时间与必需时间进行对比,得出异形隧道的合理排烟风速范围与疏散门的合理间距范围。  相似文献   

12.
为了更有效且经济地对双洞单向公路隧道联络通道的设置间距进行确定,本研究首先结合PHOENICS计算软件建立了某特长双洞单向公路隧道的计算模型,并对隧道内的火灾烟雾场及温度场进行了模拟研究;进而以修正的Crane模型及FED死亡模型为基础,以“高温-CO”叠加伤害为原则,通过微元积分的手段对火灾温度及CO浓度进行了进一步的修正,从而推导出了人员逃生过程中的生命损失值模型;再以荷兰学者在Benelux隧道内所进行的火灾人员疏散实验研究为基础,结合蒙特卡洛法给出了逃生人员的疏散时间及疏散速度的分布情况,最终将以上所得研究结果进行联立,得出了“联络通道间距—人员死亡概率”关系曲线。研究表明:双洞单向公路隧道发生火灾时,其通风风速超过临界风速时才会有利于下游温度及CO浓度的控制,否则通风将会对下游人员的逃生形成负作用。当环境风速为0 m/s且逃生距离为200 m时,人员逃生失败概率为1.008 65%;当环境风速为2.0 m/s且逃生距离为400 m时,人员逃生失败概率最大,其大小为3.319 91%。最终结合风险评价等级得出了长大双洞隧道联络通道间距应小于320 m为宜。  相似文献   

13.
环境因素对隧道火灾蔓延的数值模拟与分析   总被引:2,自引:0,他引:2  
以某过江隧道为研究对象,利用FDS对该隧道火灾进行全尺寸模拟。研究火灾前期隧道内初始温度、风速和车距对火灾发展蔓延的影响规律:较高的初始温度会加速火灾发展;风可降低热量和烟气的积聚,但风速过大则会加速火灾蔓延;车距越小,火灾蔓延越快。在研究结果的基础上提出改进建议,为隧道运营中温度、风速和车距的控制,现实灭火救援以及人员疏散提供了理论依据。  相似文献   

14.
公路隧道火灾工况下的人员疏散逃生涉及多方面复杂因素,而影响到逃生设计方案的可靠性。基于国内外相关隧道疏散模拟试验的统计分析结果,依据风险管理规范相关规定,采用Monte Carlo随机数值试验方法对疏散逃生设计进行模拟分析,并对火灾工况下人员逃生风险等级与逃生距离的关系进行分析。通过分析得出,火灾工况下人员逃生的风险可接受的逃生距离区间为(0,380]m,风险勉强可接受的逃生距离区间为(380,445]m,这一结果虽与国内外公路隧道规范中逃生通道间距的取值范围基本一致,但由于其与特定人员荷载、逃生方式等密切相关,因此,在公路隧道逃生通道间距的设计上应充分考虑这些因素的影响,而不是简单地采用某一固定不变的上限或下限值。  相似文献   

15.
为探究站台火灾条件下不同隧道排烟模式对地铁人员疏散的影响,以岛式地铁站为研究对象,利用Pyrosim建立火灾模型,并分析4种隧道排烟模式下的楼扶梯入口风速、烟气温度、CO体积分数和能见度的分布。结果表明:单一隧道排烟模式均无法满足安全疏散要求;疏散时间360 s内,在人眼特征高度处,车站隧道排烟模式下的人员疏散经过区域的能见度不能满足疏散要求,CO体积分数、温度、楼扶梯口风速均满足安全疏散要求;3种区间隧道排烟模式下的楼扶梯口风速均无法满足人员安全疏散要求,区间隧道推拉式反向排烟模式最不利于疏散区域烟气散热,区间隧道双拉式排烟模式排烟效果最为显著;火灾烟气的3个潜在危险因素中,相比于温度和CO体积分数,满足能见度在安全范围内的难度更高。  相似文献   

16.
《Planning》2016,(7)
为了探究火灾发生后风机启动时间对地铁区间烟气控制的影响,现以内径为5.5m圆形盾构地铁区间隧道为研究对象,采用数值模拟方法研究不同火源功率(5、7.5、10 MW)下隧道内烟气的温度分布,分析了4种火灾工况下隧道顶部最高温度值以及出现位置,研究了风机延迟启动时间对隧道内烟气温度分布的影响。结果表明,隧道顶部最高温度随火源功率增大而增高;纵向通风风速会造成隧道顶部最高烟气温度区域向通风方向偏移,但随着火源功率增加,排烟风速的影响会逐渐减弱;延迟启动风机会破坏烟气层的稳定性,导致烟气沉降到列车的车厢位置,从而会影响乘客安全疏散。  相似文献   

17.
在北京地铁某区间隧道内,利用热烟试验模拟列车火灾,通过在距车头20 m处设置700 k W乙醇池火源,点火5min 30 s后启动排烟风机,观察烟气蔓延特性并测量隧道断面风速、沿程温度等参数。试验发现,在2.10 m/s的断面平均风速下,烟气可以被完全控制在下游至中间风井区段而无逆流存在,并证明该值大于理论计算临界风速。以距火源250 m处为例,烟气抵达初期其分层界面距地约2 m,随着逐渐冷却,8 min左右完全沉降至地面。试验中隧道升温不明显,距离地面越远,温度上升越显著。  相似文献   

18.
<正>如今,各地高层建筑越来越多。这些高层建筑内部往往通道纵横交错,一旦发生火灾,火势便会顺着通道蔓延,烟雾也会四处弥漫,给人员逃生和消防员的灭火带来很大困难。这时,我们就需要一种装置,防止火势通过建筑物内部的通道蔓延,以保证消防疏散通道的安全,这种装置就是防火门。防火门的分类防火门是设在防火分区间、疏散楼梯间、垂直竖井等具有一定耐  相似文献   

19.
地铁区间隧道内防灾的关键在于烟气控制。以某地铁过江隧道为研究对象,对区间隧道的通风模式、系统设置、排烟口布置、临界风速设定等方面提出了设计方案。利用CFD数值模拟方法和大涡模拟火灾分析软件FDS,对相应火灾场景的火灾特性、烟气蔓延性状等进行模拟对比分析,探讨设计方案的合理性及有效性。模拟结果表明,当采用纵向通风模式下设排烟道的集中排烟模式可保证隧道安全,分析结果为设计单位在排烟口布置、风机选取等方面提供一定的参考。  相似文献   

20.
隧道内慢行道发生火灾,机动车行道作为疏散通道时,在现有规范中,未对疏散门间距给出明确要求。以济南春暄路隧道为工程实例,慢行道火灾情况下对比必需疏散时间与可用疏散时间,验证其疏散安全性以及疏散门间距有效性。结果表明,慢行道发生火灾,耐火极限2 h的中隔墙和甲级防火门将慢行道与机动车道分隔成两个防火分区,机动车道可作为安全区;火源前后均有疏散人员,且人员无法绕过火源疏散,为防止通风时烟气向另一侧聚集危害人员安全,故不进行通风排烟,烟气自由蔓延;疏散门间距为250 m、火源正对疏散门时,不满足人员安全疏散要求;疏散门间距为200 m和150 m时,满足人员安全疏散要求。从安全和运行成本综合考虑,推荐慢行道内疏散门设置间距为200 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号