首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coutant C  Sacks R 《Analytical chemistry》2000,72(21):5450-5458
A computer-driven pressure controller connected to the junction point of a series-coupled ensemble of two capillary GC columns having different stationary-phase selectivity is used to obtain on-the-fly (programmable) changes in ensemble selectivity. Changes in the junction-point pressure result in differential changes in the local carrier gas velocity in the two columns, and this results in changes in the pattern of peaks eluting from the ensemble. When used with relatively fast temperature programming (30 degrees C/min), the pattern of eluting peaks can be very sensitive to the time at which a selectivity (junction-point pressure) change is implemented. These elution pattern changes are described for a set of six PCB congeners that elute with a small range of retention times. The components are considered as a group, and changes in their elution pattern are described for a single junction-point pressure change, which is implemented at various times after sample injection. If the pressure change is implemented after the components have migrated across the junction point, the final pressure has relatively little impact on the ensemble retention pattern. Pressure changes implemented prior to the components reaching the junction can have a large effect and usually result in a pattern of peaks similar to the pattern obtained when the final pressure is used for the entire separation. For pressure changes made when the group of components is near the junction point, the observed peak pattern may be very sensitive to the time of the pressure change. The time at which the junction-point pressure change occurs is varied in 1.0-s intervals. Artifacts such as peak doubling and peak focusing or broadening are observed if a migrating band is crossing the column junction point at the time of the programmed pressure change.  相似文献   

2.
High-speed GC and GC/time-of-flight MS of lemon and lime oil samples   总被引:1,自引:0,他引:1  
The high-speed GC separation and MS characterization of lime oil and lemon oil samples using programmable column selectivity and time-of-flight mass spectrometry is described. The volatile essential oils are separated on a series-coupled (tandem) column ensemble consisting of a polar trifluoropropylmethyl polysiloxane column and a nonpolar 5% phenyl dimethyl polysiloxane column. Both columns are 7 m long. A 50 degrees C/min linear temperature ramp from 50 to 200 degrees C is used, giving an analysis time of approximately 2.5 min. A time-of-flight MS with time array detection and automated peak finding and characterization software was used to identify 50 components in lime oil samples and 25 components in lemon oil samples. Despite numerous cases of extensive peak overlap, spectral deconvolution software was very successful in the characterization of most overlapping peaks. For cases where a more complete chromatographic separation is desirable, the tandem column ensemble is operated in the first-column stop-flow mode to enhance the separation of selected overlapping clusters of peaks. A valve between the junction point of the tandem column ensemble and a source of carrier gas at the GC inlet pressure is opened for 2-5-s intervals to stop the flow of carrier gas in the first column. This is used to increase the separation of target component groups that overlap in the ensemble chromatogram without first-column stop-flow operation. This procedure is used to isolate the peak for limonene, the largest peak in the analytical-ion chromatogram of both the lime and lemon oil samples.  相似文献   

3.
Grall AJ  Sacks RD 《Analytical chemistry》2000,72(11):2507-2513
A pressure-tunable ensemble of two series-coupled capillary columns operated at subambient outlet pressure is described. The ensemble consists of a 4.5-m length of nonpolar dimethyl polysiloxane column followed by a 7.5-m length of polar trifluoropropylmethyl polysiloxane column. Air at an inlet pressure of 1.0 atm is used as carrier gas, and a vacuum pump is used to pull the carrier gas and injected samples through the column ensemble. Detection is provided by a photoionization detector operated at a pressure of 0.3 psia. Ensemble selectivity is controlled by means of an electronic pressure controller located at the junction point between the columns. The minimum pressure step size is 0.1 psi, and 50 different set-point pressures can be used, each one producing a different pattern of peaks eluting from the column ensemble. Measured ensemble retention factors for a set of target compounds produce straight lines when plotted versus the ratio of the calculated holdup time of the first column in the ensemble to the total ensemble holdup time. A component band trajectory model is used to describe the effects of ensemble junction-point pressure on the elution patterns generated by the ensemble. Ensemble retention times predicted by the model are in good agreement with values obtained from chromatograms. The use of on-the-fly set-point pressure changes during a separation (selectivity programming) is demonstrated and used to improve the quality of the separation of a 19-component test mixture.  相似文献   

4.
A tandem ensemble of two 4.5-m-long x 0.25-mm-i.d. capillary columns with the first using a 0.50-microm film of nonpolar dimethyl polysiloxane and the second using a 0.25-microm film of polar trifluoropropylmethyl polysiloxane is operated with atmospheric pressure air as the carrier gas and an outlet pressure of 50.5 kPa established using a small vacuum pump. A thicker stationary-phase film is used in the first column to increase retention for very volatile compounds. This significantly increases the resolution of these compounds. The thicker film in the first (nonpolar) column decreases the polarity of the tandem column ensemble and, thus, changes its selectivity. A low-dead-volume valve, connected between the column junction point and a source of atmospheric pressure air, is used to obtain pulsed modulation of the carrier gas flow through the column ensemble. When the valve is open, the ensemble inlet pressure and the junction-point pressure are nearly the same, and carrier gas flow nearly stops in the first column, and flow in the second column increases. Enhanced resolution of a component pair that is separated by the first column but coelutes from the column ensemble can be obtained if the valve is opened for a few seconds after one of the components has crossed the junction and is in the second column, but the other component is still in the first column. A sequence of appropriately timed pulses is used to obtain enhanced resolution of several pairs of components that coelute from the column ensemble. These methods enabled the complete separation of an 18-component vapor mixture of common solvents in air in 3.5 min.  相似文献   

5.
Fast temperature programming (20-50 °C/min) is used with relatively short separation columns to achieve high-speed separations of mixtures covering a wide boiling point range. A cryofocusing inlet is used to obtain narrow injection plugs. High-speed temperature-programmed chromatograms are evaluated by considering local peak capacity as a function of carbon number and boiling point for the normal alkanes in the range C(8)-C(19). The peak capacity generation rate (peaks per second) as a function of carbon number and the total cumulative peak capacity as a function of time are also considered for various column lengths and carrier gas flow rates. Column lengths in the range 3.6-25.4 m and average carrier gas velocity values in the range 50-200 cm/s are considered. For a 6.8-m-long, 0.25-mm-i.d. column operated at an average carrier gas velocity of about 100 cm/s and using a nominal programming rate of 50 °C/min, C(19) elutes in 178 s with a total peak capacity of 168 peaks. If the programming rate is reduced to 20 °C/min, the C(19) elution time more than doubles but the total peak capacity increases by only 20%. For a 25.4-m-long column using a nominal 50 °C/min programming rate, the C(19) retention time is 262 s with a peak capacity of 279 peaks. The use of average carrier gas flow rates greater than about 100 cm/s, which is common in isothermal high-speed GC, results in a considerable loss in total peak capacity with remarkably little reduction in analysis time.  相似文献   

6.
A series-coupled (tandem) ensemble of two capillary GC columns using different stationary phases and a pneumatically actuated low-volume valve connecting the column junction point to an atmospheric-pressure vent line is used to adjust the ensemble separation of selected pairs of target compounds. The valve is normally closed, and the pressure at the column junction point assumes the value that would occur in the absence of any other connections. The valve can be opened for brief periods of time, thus producing pulses of atmospheric pressure at the column junction point. If a component pair is separated by the first column but coelutes from the column ensemble, the ensemble separation can be increased if a pulse occurs when one of the components has migrated across the column junction but the second component is still on the first column. All of the mixture components that are on the same column during the time that the valve is open (pulse duration) will be shifted to either larger or smaller retention times, but the pattern of peaks (elution order) for these components from the column ensemble will be relatively unaffected by the pressure pulse. Multiple pulses can be used to enhance the separation of different component pairs, which sequentially reach the column junction point. Performance of the valve-operated system is described. Time-of-flight mass spectrometry with time-array detection is used to examine the effects of pulse duration on the separation achieved for different component pairs.  相似文献   

7.
A computer-driven pressure controller is used to deliver pressure pulses to the junction point of two series-coupled columns using different stationary-phase chemistries. The column ensemble consists of a trifluoropropylmethyl polysiloxane column followed by a dimethyl polysiloxane column. Each pressure pulse causes a differential change in the carrier gas velocities in the two columns, which lasts for the duration of the pulse. A pressure pulse is used to selectively increase the separation of a component pair that is separated by the first column but coelutes from the series-coupled ensemble. If both components are on the same column when the pulse is applied, a small change in the ensemble separation occurs. If one component of the pair is on the first column and the other component is on the second column, a pressure pulse can result in a much larger change in the ensemble separation for the component pair. A model with a spreadsheet algorithm is used to predict the effects of a pressure pulse on the trajectories of component bands on the column ensemble. The effect of the initiation time of a pressure pulse is investigated for a two-component mixture that coelutes from the column ensemble. For the case where the entire pressure pulse occurs when one of the components is on the first column and the other component is on the second column, the peak separation from the ensemble increases nearly linearly with the product of the pressure pulse amplitude and the pulse duration. Peak shape artifacts are observed if the pressure pulse occurs when a solute band is migrating across the column junction point.  相似文献   

8.
A series-coupled ensemble of microfabricated GC columns made by dry reactive ion etching of silicon substrates is evaluated for use with pneumatic selectivity enhancement techniques for targeted pairs of volatile organic compounds. Each column is 3.0 m long with a 150 miceom wide by 240 microm deep cross section. Dynamic coating was used to prepare a nonpolar column with a dimethyl polysiloxane stationary phase and a moderately polar column with a trifluoropropylmethyl polysiloxane stationary phase. Each column generates 5000-6000 theoretical plates. The columns are operated in series with the nonpolar column connected to a split inlet, the polar column connected to a flame ionization detector, and a valve connected between the column junction point and the inlet to the first column. When the valve is closed, the effluent from the first column passes directly into the second column. When the valve is open, both ends of the first column are at the inlet pressure, and flow stops in this column while increased flow is obtained in the second column. For analyte pairs that are separated by the first column but coelute from the column ensemble, the valve is opened for a few seconds after the first component of the pair has passed into the second column but the second component is still in the first column. The result is enhanced separation of the pair in the ensemble chromatogram. Relatively thick cross-linked stationary-phase films are used to increase retention for volatile compounds. The combination of air carrier gas and stationary-phase film thickness in the range 1-2 microm requires the use of relatively low average carrier gas velocities (typically less than 10 cm/s) for adequate resolving power of the column ensemble. Selectivity enhancement under isothermal conditions for a 14-component mixture of volatile organic compounds is demonstrated where neither of the columns alone nor the column ensemble without selectivity enhancement could obtain a complete separation.  相似文献   

9.
A pneumatically actuated valve is used to connect the junction point of a series-coupled column ensemble to a ballast chamber containing carrier gas at the ensemble inlet pressure in order to periodically stop the carrier gas flow in the first column. When the valve is opened, mixture components, which have migrated across the column junction, are accelerated toward a time-of-flight mass spectrometer that is used as an ensemble detector. Mixture components, which are still in the first column, are frozen in position. This allows for the insertion of time windows into the ensemble chromatogram that can aid in the separation of some overlapping component peaks. The capillary column ensemble (0.18-mm i.d. x 0.18-microm film thickness) consists of a 7.0-m length of polar, (trifluoropropyl)methyl polysiloxane column followed by a 7.0-m length of nonpolar dimethyl polysiloxane column. A flame ionization detector located at the column junction point is used to monitor a portion of the effluent from the first column in order to determine the valve timing sequence needed to enhance the separation of component pairs that are separated by the first column but coelute from the column ensemble. When one of the components of a targeted pair has crossed the junction but the other component is still in the first column, the valve is opened, typically for 1-5 s. The stop-flow system is used to enhance the separation of a mixture containing some common essential oil components and a mixture containing some common pesticides.  相似文献   

10.
A model and a spreadsheet algorithm is described for the prediction of solute-band migration trajectories in a series-coupled combination of two capillary GC columns with pressure-tunable and -programmable selectivity and operated under temperature-programmed conditions. The model takes into account the acceleration of carrier gas in the two columns as a result of decompression effects, the deceleration of carrier gas as a result of the increase in viscosity during temperature programming, the decrease in solute retention factors with increasing temperature during the temperature program, the differences in retention factors for the two columns, and programmed changes in the carrier-gas flow rates in the two columns during selectivity programming. In the model, the 20-meter-long column ensemble is divided into 1-cm-long intervals, and the carrier-gas velocity and column temperature are assummed to be constant in any interval. Migration times for all of the mixture solutes are computed for each column interval, and the solute-band positons in the column ensemble are plotted versus the running sum of these migration times to obtain band trajectory plots. The sum of these migration times for all 2,000 intervals gives the ensemble retention times for the solutes. Isothermal retention factors (k) for all of the mixture components at various column temperatures (Tc) are used as imput to the algorithm. Slope and intercept values of In(k) vs 1/Tc plots are used in the algorithm. General features of the model are tested using a mixture of C12-C24 normal alkanes. A mixture of polar and nonpolar compounds is used to test the utility of the model for the predicition of peak separations and retention times with pressure-tunable and -programmable selectivity. Good agreement is observed in all cases.  相似文献   

11.
Whiting J  Sacks R 《Analytical chemistry》2003,75(10):2215-2223
A series-coupled ensemble of a nonpolar dimethyl polysiloxane column and a polar trifluoropropylmethyl polysiloxane column with independent at-column heating is used to obtain pulsed heating of the second column. For mixture component bands that are separated by the first column but coelute from the column ensemble, a temperature pulse is initiated after the first of the two components has crossed the column junction point and is in the second column, while the other component is still in the first column. This accelerates the band for the first component. If the second column cools sufficiently prior to the second component band crossing the junction, the second band experiences less acceleration, and increased separation is observed for the corresponding peaks in the ensemble chromatogram. High-speed at-column heating is obtained by wrapping the fused-silica capillary column with resistance heater wire and sensor wire. Rapid heating for a temperature pulse is obtained with a short-duration linear heating ramp of 1000 degrees C/min. During a pulse, the second-column temperature increases by 20-100 degrees C in a few seconds. Using a cold gas environment, cooling to a quiescent temperature of 30 degrees C can be obtained in approximately 25 s. The effects of temperature pulse initiation time and amplitude on ensemble peak separation and resolution are described. A series of appropriately timed temperature pulses is used to separate three coeluting pairs of components in a 13-component mixture.  相似文献   

12.
A pressure-tunable series-coupled ensemble of two capillary GC columns is combined with a time-of-flight MS detector for the high-speed characterization of mixtures containing hydrocarbon compounds. The column ensemble consists of a nonpolar 5% phenyl poly(dimethylsiloxane) column and a very polar poly(ethylene glycol) column. The TOFMS instrument uses time-array detection to obtain up to 500 complete electron mass spectra per second. Instrument software allows for automated peak finding and the spectral deconvolution of severely overlapping unknown chromatographic peaks, if their fragmentation patterns are significantly different and if at least two spectra can be recorded between the peak apexes. By adjusting the carrier-gas pressure at the column-junction point, the separations between adjacent peak pairs can be adjusted to enhance the capabilities of the TOFMS detector. The sensitivity of peak-pair separation to changes in junction-point pressure is studied for combinations of alkanes, olefins, and aromatic compounds. When complete separation is required, the use of pressure-tunable column ensembles cannot always provide sufficient control of peak-pair separation for structurally similar compounds. However, complete chromatographic separation typically is not required with the TOFMS detection, and a pressure-tunable column ensemble is very useful for the high-speed characterization of hydrocarbon mixtures.  相似文献   

13.
A prototype portable gas chromatograph that combines a multiadsorbent preconcentrator/focuser, a tandem-column separation stage with individual column temperature control and junction point pressure modulation, and a detector consisting of an integrated array of polymer-coated surface acoustic wave microsensors is described. Using scheduled first-column stop-flow intervals and independent temperature programming of the two columns, it is possible to adjust the retention of eluting analyte vapors to maximize vapor recognition with the microsensor array and minimize the time of analysis. A retention window approach is combined with Monte Carlo simulations to guide retention tuning requirements and facilitate pattern recognition analyses. The determination of a 30-vapor mixture of common indoor air contaminants in < 10 min is demonstrated using ambient air as the carrier gas. Detection limits of < 10 ppb are achieved for the majority of compounds from a 1-L air sample on the basis of the most sensitive sensor in the array. Performance is assessed in the context of near-real-time indoor air quality monitoring applications.  相似文献   

14.
The key to rapid temperature programmed separations with gas chromatography are a fast, low-volume injection and a short microbore separation column with fast resistive heating. One of the major problems with the reduction of column dimensions for micro gas chromatography is the availability of a stationary phase that provides good separation performance. In this report, we present the first integration of single-wall carbon nanotubes (SWNTs) as a stationary phase into 100 mum x 100 mum square and 50-cm-long microfabricated channels. The small size of this column with integrated resistive heater and the robustness of the SWNT phase allow for fast temperature programming of up to 60 degrees C/s. A combination of the fast temperature programming and the narrow peak width of small-volume injections that can be obtained from a high-speed, dual-valve injection system allows for rapid separations of gas mixtures. We demonstrate highly reproducible separations of four-compound test mixtures on these columns in less than 1 s using fast temperature programming.  相似文献   

15.
Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).  相似文献   

16.
Columns in capillary electrochromatography (CEC) most commonly have the detection window located immediately after the retaining frit of the packed segment. Here, the properties of "duplex" columns having a predetection open segment between the frit and the detector window are examined with particular regard to the effect of the relative lengths of the packed and open segments on the separation of mixtures containing neutral and charged components. This configuration allows the use of columns with short packed segments in contemporary instruments for rapid separations. It is shown that, by varying the length of the packed segment, the balance of chromatographic and electrophoretic forces can be shifted, and the selectivity can be adjusted if the separation involves the interplay of both mechanisms. Expressions are presented for estimating the retention time in a duplex column if the chromatographic and electrophoretic properties of the sample components are known. The results are expected to facilitate CEC method development in selection of the respective column segment lengths for optimum separation.  相似文献   

17.
A simple approach to two-dimensional liquid chromatography has been developed by coupling columns of different selectivity using a 12-port, dual-position valve and a standard HPLC system. The valve at the junction of the two columns enables continuous, periodic sampling (injection) of the primary column eluent onto the secondary column. The separation in the primary dimension is comparable to conventional HPLC, whereas the secondary column separation is fast, lasting several seconds. The high-speed separation in the secondary dimension enables the primary column eluent to be sampled with fidelity onto the secondary column throughout the chromatographic run. One might expect a coupled column liquid chromatography system operating in reverse-phase mode to be strongly correlated and, hence, inefficient. However, by applying a solvent gradient in the primary dimension and by progressively incrementing the solvent strength in the secondary dimension (tuning), the inefficiency or cross correlation between the two dimensions is minimized. In a tuned two-dimensional system, the influence of primary column retention (usually hydrophobicity) is minimal on secondary column retention. This enables subtle differences in component interaction with the two stationary phases to dominate the secondary column retention. The peaks are randomly dispersed over a retention plane rather than along a diagonal, resulting in an orthogonal separation. The peak capacity is multiplicative, and each component has a unique pair of retention times, enabling positive identification. In addition, the location of the component provides two independent measures of molecular properties. The 2D-LC system was evaluated by analyzing a test mixture made of some aromatic amines and non-amines on different secondary columns (ODS-AQ/ODS monolith, ODS/amino, ODS/cyano). The relative location of sample components in the two-dimensional plane varied significantly with change in secondary column. Among the secondary columns, the amino and cyano columns offered the most complementary separation, with the retention order of several components reversed in the secondary dimension. The theoretical peak capacity of the 2D-LC system was around 450 for a separation lasting 30 min. A 2D-LC system involving amino and cyano columns resulted in a high-speed separation of the test mixture, with most of the chemical components resolved within a few minutes.  相似文献   

18.
A procedure is described for the preparation of high-performance etched silicon columns for gas chromatography. Rectangular channels, 150 mum wide by 240 mum deep are fabricated in silicon substrates by gas-phase reactive ion etching. A 0.1-0.2-mum-thick film of dimethyl polysiloxane stationary phase is deposited on the channel walls by filling the channel with a dilute solution in 1:1 n-pentane and dichloromethane and pumping away the solvent. A thermally activated cross-linking agent is used for in situ cross-linking. A 3-m-long microfabricated column generated approximately 12 500 theoretical plates at optimal operating conditions using air as carrier gas. A kinetic model for the efficiency of rectangular cross-section columns is used to evaluate column performance. Results indicate an additional source of gas-phase dispersion beyond longitudinal diffusion and nonequilibrium effects, probably resulting from numerous turns in the gas flow path through the channel. The columns are thermally stable to at least 180 degrees C using air carrier gas. Temperature programming is demonstrated for the boiling point range from n-C5 to n-C12. A 3.0-m-long column heated at 10 degrees C/min obtains a peak capacity of over 100 peaks with a resolution of 1.18 and a separation time of approximately 500 s. With a 0.25-m-long column heated at 30 degrees C/min, a peak capacity of 28 peaks is obtained with a separation time of 150 s. Applications are shown for the analysis of air-phase petroleum hydrocarbons and the high-speed analysis of chemical warfare agent and explosive markers.  相似文献   

19.
A novel approach to comprehensive two-dimensional gas chromatography (GCxGC) separations is presented, which operates in a new region of the "GCxGC optimization pyramid". The technique relies on the use of short primary columns to decrease elution temperatures (Te) of analytes from the primary column, with a Te reduction of up to 50 degrees C illustrated. This in turn has implications that will expand the areas where GCxGC can be used, as decreased elution temperatures will allow GCxGC to be applied to mixtures of less volatile compounds or permit the use of less thermally stable stationary phases in the column ensemble. As well, it will allow GCxGC to be applied to thermally labile compounds through a reduction in elution temperature. With short primary columns, resolution and efficiency in the first dimension is sacrificed, but speed is gained; however, the second column in GCxGC provides additional resolution and separation of compounds of differing chemical properties. Thus, it is possible to recover some of the analytical separation power of the system to provide resolution of target analytes from sample impurities. As an example, a case study using short primary columns for the separation of natural pyrethrins, which degrade above 200 degrees C, is described. Even with the sacrifices of overall separation power that are made, there is still sufficient resolution available to separate the six natural pyrethrins from each other and the complex chrysanthemum extract matrix. The use of cold-on-column injection, a short primary column, and a high carrier gas flow rate allow the pyrethrins to be eluted below 200 degrees C, with separation in 17 min and complete resolution from sample matrix.  相似文献   

20.
Columns were fabricated in silicon substrates by deep reactive-ion etching. The channels were sealed with a glass wafer anodically bonded to the silicon surface. Heaters and temperature sensors were fabricated on the back side of each column chip. A microcontroller-based temperature controller was used with a PC for temperature programming. Temperature programming, with channel lengths of 3.0 and 0.25 m, is described. The 3.0-m-long channel was fabricated on a 3.2 cmx3.2 cm chip. Four columns were fabricated on a standard 4-in. silicon wafer. The 0.25-m-long channel was fabricated on a 1.1 cmx1.1 cm chip, and approximately 40 columns could be fabricated on a 4-in. wafer. All columns were coated with a nonpolar poly(dimethylsiloxanes) stationary phase. A static coating procedure was employed. The 3.0-m-long column generated about 12000 theoretical plates, and the 0.25-m-long channel generated about 1000 plates at optimal carrier gas velocity. Linear temperature ramps as high as 1000 degrees C/min when temperature programmed from 30 to 200 degrees C were obtained with the shorter column. With the 0.25-m-long column, normal alkanes from n-C5 through n-C15 were eluted in less than 12 s using a temperature ramp rate of 1000 degrees C/min. Temperature uniformity over the column chip surface was measured with infrared imaging. A variation of about 2 degrees C was obtained for the 3.0-m-long channel. Retention time reproducibility with temperature programming typically ranged from +/-0.15% to +/-1.5%. Design of the columns and the temperature controller are discussed. Performance data are presented for the different columns lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号