首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
采用溶胶—凝胶法及共浸渍法制备了TiO2-SiO2-Al2O3复合载体,并用共浸渍法制备负载型MoP/TiO2-SiO2-Al2O3催化剂。XRD结果表明,TiO2的晶相衍射峰呈锐钛矿,SiO2则大多以无定型态分散于γ-Al2O3晶体表面。通过原位还原技术对催化剂进行还原处理,在连续固定床反应器上进行活性评价,结果表明,钛硅铝物质的量比对催化剂的活性有很大的影响,在温度为360℃,压力为3MPa,液时空速为1h-1,氢油体积比为500∶1的反应条件下,n(Ti)∶n(Si)∶n(Al)为1∶1∶4,Mo负载量为20%时,MoP/TiO2-SiO2-Al2O3催化剂的加氢脱芳活性最高,达到65.6%。并且TiO2-SiO2-Al2O3三元复合载体比传统的γ-Al2O3和SiO2-Al2O3二元复合载体的活性分别提高了19.6%和13.6%。  相似文献   

2.
采用静态混晶法制备MCM-41/γ-Al2O3复合载体,并利用XRD、BET及Py-IR等方法对复合载体进行表征;以模型石脑油为原料,在固定床反应装置上评价以MCM-41/γ-Al2O3为载体的CoMo负载型催化剂的烯烃异构和加氢脱硫活性,考察制备过程中γ-Al2O3水和温度、模板剂用量、晶化温度、晶化时间等对复合载体中MCM-41结晶度及催化剂性能的影响.结果表明:当γ-Al2O3水合温度为135℃、晶化温度为125℃、晶化时间为24h、投料摩尔比为n(γ-Al2O3)∶n(SiO2)∶n(NaOH)∶n(CTAB)(十六烷基三甲基溴化铵)∶n(H2O)=0.06∶1.0∶0.3∶0.15∶90时,所得MCM-41/γ-Al2O3复合载体具有规整有序的介孔孔道、较大的比表面积(750m2/g)和比孔容(0.55cm3/g)及较窄的孔径分布(2~3nm),对应的CoMo/MCM-41-γ-Al2O3催化剂具有较优异的催化性能.磷(P)改性可有效增加载体的酸量和调节载体的酸分布;载体1%P(质量分数)改性可改善催化剂的异构和加氢脱硫性能.在温度为265℃、压力为1.5MPa、氢油体积比为300、空速为2h-1时,模拟原料油的异构化率、脱硫率分别为76.5%、96.5%.  相似文献   

3.
利用固定床流动反应装置研究了金属负载型催化剂对炼厂气、CO2 和O2 转化制备合成气的催化活性;考察了催化剂活性组分、载体、负载量、还原温度、反应温度对催化剂活性的影响,发现催化活性由大到小依次为Ni/γ-Al2O3,Ni/α-Al2O3,Co/γ-Al2O3,Fe/γ-Al2O3,Cu/γ-Al2O3;同时考察了空速、原料气配比对合成气组成的影响,结果表明,调节原料气的配比可以制备不同的合成气.  相似文献   

4.
通过程序升温还原磷钼酸盐前体的方法制备了无负载和负载型磷化钼催化剂,并采用TG-DTG,XRD和BET技术对催化剂进行表征。采用高压连续微反装置,以二苯并噻吩、喹啉的混合体系为模型化合物考察了MoP,MoP/γ-Al2O3,CoMoP/γ-Al2O3催化剂的加氢脱硫和加氢脱氮活性,反应温度为340℃,反应压力为3.0MPa。结果表明,合成的无负载和负载型磷化钼催化剂表面均出现活性组分MoP的特征衍射峰;负载后催化剂的比表面积为74.4 m2/g;3种磷化钼催化剂的程序升温还原过程均出现明显的失重过程,MoP/γ-Al2O3前体开始还原转化的温度约为509℃。CoMoP/γ-Al2O3催化剂的HDS活性在适当反应条件下可达98.54%;当模型化合物中硫氮含量大幅提高时,催化剂的活性并未明显降低。  相似文献   

5.
采用混烧法制备了WO3/γ-Al2O3催化剂,用于催化反应精馏两步合成ε-己内酯。考察了反应温度、反应时间、填料塔高、催化剂用量和原料用量对合成反应的影响。结果表明,两步反应温度分别为60℃和50℃、反应时间分别为4h和5 h、填料塔高为400 mm、m(WO3/γ-Al2O3)∶m(环己酮)=0.1、m(丙酸)∶m(环己酮)=7.3、m(30%H2O2)∶m(环己酮)=2.7时,过氧化氢的转化率和ε-己内酯的收率分别可达到95.8%和71.2%。  相似文献   

6.
为探究不同催化剂对1,4-丁二醇脱水反应的影响,以γ-氧化铝(γ-Al2O3)为载体,通过共沉淀法制备不同硅含量的γ-Al2O3,利用X射线衍射、扫描电镜、N2吸脱附等表征了焙烧温度对γ-Al2O3形貌、孔结构的影响.采用等体积浸渍法制备了Fe2O3-Al2O3和CuO-Al2O3,考察了负载不同金属的γ-Al2O3对1,4-丁二醇脱水反应的影响.结果表明,改性γ-Al2O3的催化活性与其前驱体的焙烧温度相关,催化剂前驱体在500℃进行热处理时得到的 γ-Al2O3对1,4-丁二醇反应的催化效率最高;铜元素的加入会降低γ-Al2O3的催化能力,负载金属为铁时1,4-丁二醇的转化率和四氢呋喃的收率明显提高.在反应温度以60℃/h的速率升至200℃、催化剂用量为5.0%(相对于1,4-丁二醇用量)、反应时间为7 h的条件下,γ-Al2O3对1,4-丁二醇反应的催化效率最高,1,4-丁二醇脱水反应的转化率和选择性均可达到99%.  相似文献   

7.
制备了稀土改性固体超强酸SO24-/TiO2-La2O3环境友好催化剂,并以丁酸丁酯的合成作为探针反应,系统考察了原料摩尔比n(La3+)∶n(Ti4+)、硫酸浸渍时间、焙烧温度、活化时间等制备条件对SO24-/TiO2-La2O3催化活性的影响.实验表明:制备催化剂的适宜条件是原料摩尔比n(La3+)∶n(Ti4+)=1∶34,浸渍浓度为0.8 mol.L-1,浸渍时间为24 h,焙烧温度为480℃,活化时间3 h.利用优化条件下制备的催化剂SO24-/TiO2-La2O3催化合成缩醛(酮),在醛/酮与二元醇(乙二醇,1,2-丙二醇)的投料摩尔比为1∶1.5,催化剂的用量占反应物总投料质量的0.5%,反应时间为1 h条件下,10种缩醛(酮)的产率为41.4%~95.8%.  相似文献   

8.
采用不同的负载制备方法、改变其活性组分的负载量、γ-Al2O3的加入顺序以及加入助剂制备一系列的MoP/γ-Al2O3催化剂,对催化剂进行了表征,并与催化剂活性相关联.结果表明:不同的负载制备方法、活性组分的负载量对催化剂活性影响比较大;而载体γ-Al2O3加入顺序对MoP/γ-Al2O3催化剂表面物种有一定的影响,从而影响催化剂的活性;助剂Ni能较大地提高催化剂的催化活性.  相似文献   

9.
采用酸沉淀法制备大孔γ-Al2O3为载体,并用浸渍法制备Ni2P(25%)/γ-A12O3催化剂。BET、XRD、压汞法的分析结果显示:合成大孔γ-Al2O3载体晶型良好,且具有适宜比表面积和孔结构。催化剂经原位还原处理后,以柴油为原料在连续固定反应装置上,考察了催化剂的制备条件及反应条件对催化剂加氢脱硫活性的影响。结果表明:当载体合成温度为80℃,反应pH为8,反应条件为温度360℃、压力4.0MPa、空速1.0h-1、氢烃体积比500∶1时,催化剂的加氢脱硫活性最好,柴油的脱硫率可达98.2%。  相似文献   

10.
采用溶胶-凝胶法制备了孔径分布为50~100 nm的γ-Al2O3载体,浸渍法负载助剂CeO2,K2O和MgO.测试了助剂改性的Pd/Al2O3催化剂上CH4催化氧化反应性能.结果表明:助剂提高了Pd/Al2O3催化剂上CH4催化氧化的活性和稳定性.负载20?O2催化剂的反应活性与稳定性较好,其转化率达到90%时的反应温度为351 ℃,转化率达到10%时的反应温度为252 ℃,相比Pd/Al2O3催化剂分别降低了125 ℃和118 ℃.H2-TPR表征结果表明:含有CeO2的催化荆在110~170 ℃之间出现一个PdO物种的还原峰,PdO还原峰的面积与还原温度分别与催化剂的反应活性相一致.  相似文献   

11.
对羟基苯甲醛合成及分离方法的研究   总被引:7,自引:0,他引:7  
研究了碱性-甲醇溶液中氧气液相氧化对甲酚制取对羟基苯甲醛的合成方法.发现以Co(OAc)2·4H2O-CuSO4·5H2O为催化剂,在60~70℃、常压下氧化对甲酚5h可以获得单程收率为68.5%的对羟基苯甲醛.研究了两种新的对羟基苯甲醛分离方法,发现亚硫酸氢钠配合分离法可以在较高的对甲酚转化率下获得较高的对羟基苯甲醛收率和纯度;而多步结晶分离法可以在任何对甲酚转化率下获得较高的对羟基苯甲醛收率和纯度.  相似文献   

12.
以Fe2O3为活性组分,γ—Al2O3为载体,采用浸渍法制备了Fe2O3/Al2O3催化剂,并将其用于催化降解模拟聚丙烯酰胺(PAM)废水考察了催化剂制备条件对催化活性的影响,得出最佳制备工艺条件为:以Fe(NO3)3水溶液为浸渍液、活性组分负载量20%、焙烧时间3h、焙烧温度500℃在温度为60℃、pH=7.0、催化剂加入量为2g/L,H2O2的质量浓度为0.6g/L的条件下对质量浓度为400mg/L聚丙烯酰胺废水进行降解,反应90min后废水中聚丙烯酰胺相对分子质量降解率最高可达90%以上,CODcr去除率达86%,显示出了较高的催化活性.Fe2O3/Al2O3催化剂经过多次重复使用,催化活性基本没有降低,使用寿命长.  相似文献   

13.
采用均匀沉淀包裹法制备了微波诱导催化剂CuO/γ-Al2O3。以活性艳蓝模拟废水为目标降解物,考察了不同制备条件对催化剂活性的影响,并用扫描电镜(SEM)对所制备的催化剂进行了表征。结果表明,在水浴温度为80℃、焙烧温度为200℃、焙烧时间为3h、载体与活性组分摩尔比为2:1、微波烘干4min的条件下,制得的催化剂对活性艳蓝的脱色效果最好,同时将该催化剂用于焦化废水的处理,也获得了较好的处理效果。  相似文献   

14.
研制了一种替代净化机动车尾气所用贵金属催化剂的纳米钙钛矿型催化剂 .采用溶胶 -凝胶法制备了B位掺杂的纳米钙钛矿型复合氧化物La0 .8Sr0 .2 Co0 .8Mn0 .2 O3,并将其负载于自制的γ -Al2 O3上 ,于微反在线色谱装置上考察了负载后催化剂对丙烯腈合成反应释放气中的丙烷、CO和丙烯的氧化程度及工艺条件 .确定的最佳工艺条件为 :反应温度为 3 5 5℃ ,氧气体积分数为 89%~ 91% ,空速为 1.3× 10 3h- 1 ;在较宽松的反应条件下 ,丙烷、CO及丙烯的转化率均可达90 %以上 .结果表明 ,催化剂La0 .8Sr0 .2 Co0 .8Mn0 .2 O3/γ -Al2 O3被用于完全氧化反应具有很好的催化氧化活性 .  相似文献   

15.
研究了负载在-αAl2O3陶瓷基片上的Sm/Cs/Zn(Y)催化剂的催化性能及抗硫性能,并用TG-DSC和XRD对催化剂进行了表征。结果表明:Sm/Cs催化剂对碳烟具有较好氧化活性,最低起燃温度在305℃左右,最低峰值氧化温度约为374℃;Sm/Cs/Zn和Sm/Cs/Y催化剂也具有较好的催化活性,最低起燃温度分别在329℃和310℃左右,最低峰值氧化温度分别约为397℃和389℃。但Sm/Cs比Sm/Cs/Zn(Y)催化剂具有较好的抗硫性能。  相似文献   

16.
采用浸渍法制备了系列负载型Ru-Ir双金属催化剂,用于催化对氯硝基苯的选择加氢。系统考察了不同制备方法和制备条件对催化剂性能的影响。实验结果表明,以-γA l2O3为载体,用异丙醇共浸渍钌和铱,氢压为4.0 MPa,温度180℃,用氢气还原18 h制备的双金属Ru-Ir催化剂(nRu∶nIr=4∶1,担载量为2.0%)具有较好的催化性能。该催化剂用于对氯硝基苯加氢还原反应中,在反应温度60℃,氢气压力为2.0 MPa,底物与催化剂的摩尔比为1 000∶1条件下,反应1 h,转化率可达90.4%,目标产物对氯苯胺的选择性达99.5%。  相似文献   

17.
以三氯氧磷和环氧氯丙烷为原料,在自制催化剂固体超强酸SO4^2-/TiO2-Al2O3/La^3+作用下合成了磷酸三(1,3-二氯丙基)酯,研究了SO4^2-/TiO2-Al2O3/La^3+对合成反应的影响.结果表明:在n(环氧氯丙烷):n(三氯氧磷)=3.3:1、催化剂用量为三氯氧磷的2%、反应时间为3h时,酯化率达98.5%.该催化剂易于回收且可重复使用.  相似文献   

18.
通过正交试验优化了三元稀土固体超强酸催化剂S2O2-8/Nd2O3-ZrO2-Al2O3的制备条件,最优条件为:陈化温度为-15℃,浸渍液浓度为1.5mol/L,焙烧温度为500℃.经过红外光谱法、X射线衍射法、透射电镜法对制备的催化剂进行了表征,结果表明:SO2-4与催化剂表面形成的是桥式双配位,而且拥有高催化性能;催化剂表面还呈现晶态结构,确定为表面催化;该催化剂其平均粒径小于17nm,处于纳米尺度.  相似文献   

19.
采用沉淀浸渍法制备复合固体超强酸催化剂SO24-/ZrO2-Al2O3-WO3,运用Hammett指示剂法、FT-IR、XRD、SEM、TGA和BET等对相应的催化剂进行表征,并研究了陈化温度、焙烧温度、浸渍液浓度等制备条件以及Al2O3、WO3等不同金属氧化物的引入对SO24-/ZrO2的影响。结果表明,低温陈化的试样具有较强的酸性和催化活性,添加Al2O3可增大催化剂的比表面积和酸度值,引入WO3有利于酸性的增强。复合固体催化剂SO42-/ZrO2-Al2O3-WO3的最佳制备方案是,陈化温度为-10℃、m(Al2O3)/m(ZrO2)为3.5、m(WO3)/m(ZrO2)为1、浸渍液(NH4)2SO4浓度为1.0 mol.L-1、焙烧温度为500℃。该催化剂用于乙酸正丁酯的合成,其酯化率达到98.5%。  相似文献   

20.
采用等体积浸渍法制备了Ni/γ-Al2O3和Ni/La2O3-γ-Al2O3系列催化剂,通过固定床反应、热重分析等方法,考察了催化剂的性能。结果表明:Ni质量分数为10%的Ni/γ-Al2O3催化剂具有较高的活性;稀土元素La的加入,提高了催化剂的抗积炭性能;在相同的反应条件下,10%Ni/3%La2O3-γ-Al2O3催化剂的积炭量比10%Ni/γ-Al2O3催化剂积炭量降低了40%,稳定性大大提高。以Ni/La2O3-γ-Al2O3催化剂中Ni质量分数10%,并且La质量分数3%为最佳,实验条件下制得的合成气CO/H2接近1/1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号