首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Subsurface damages induced by grinding strongly influence the mechanical strength and optical quality of optical glasses. It is meaningful to rapid evaluate the depth of subsurface cracking through the measurement of surface roughness under different grinding parameters. Based on the features of surface and subsurface cracks as well as the kinetic analysis of surface grinding, the relationship between surface roughness and subsurface crack depth was established. Surface grinding experiments for optical glass BK7 were conducted. Utilizing optical microscope, optical profiling system and polishing-etching technique, the dependence of surface roughness and subsurface crack depth on grinding parameters was systematically analyzed. The predicted model of the relationship between surface roughness and subsurface crack depth was compared with experimental results. It was found that the relationship between surface roughness and subsurface crack depth is influenced by the half apex angle of abrasive grain as well as the magnitude of extra grain extrusion.  相似文献   

2.
The difficulty and cost involved in the abrasive machining of hard and brittle ceramics are among the major impediments to the widespread use of advanced ceramics in industries these days. It is often desired to increase the machining rate while maintaining the desired surface integrity. The success of this approach, however, relies in the understanding of mechanism of material removal on the microstructural scale and the relationship between the grinding characteristics and formation of surface/subsurface machining-induced damage. In this paper, grinding characteristics, surface integrity and material removal mechanisms of SiC ground with diamond wheel on surface grinding machine have been investigated. The surface and subsurface damages have been studied with scanning electron microscope (SEM). The effects of grinding conditions on surface/subsurface damage have been discussed. This research links the surface roughness, surface and subsurface damages to grinding parameters and provides valuable insights into the material removal mechanism and the dependence of grinding-induced damage on grinding conditions.  相似文献   

3.
This paper presents a series of micro-structured coarse-grained diamond wheels for optical glass surface grinding aiming to improve the grinding performance, especially subsurface damage. The 150 μm grit size, single layer electroplated diamond grinding wheels with different interval micro-groove arrays were manufactured by nanosecond pulsed laser, successfully. The influence of micro-structures on surface roughness and subsurface damage was investigated. Compared with conventional coarse-grained diamond wheel, the subsurface damage depth was reduced effectually from 5 to 1.5 μm, although the better surface roughness was not obtained by the micro-structured coarse-grained diamond wheel. In addition, the surface roughness and subsurface damage depth were both reduced with the decreasing interval of micro-groove arrays.  相似文献   

4.
为研究单晶硅磨削损伤,使用金刚石磨块在不同磨削速度和压力下对单晶硅表面进行高速划擦试验,金刚石的粒度尺寸为38~45 μm。通过测量硅片表面粗糙度、亚表面损伤深度和材料去除率,研究磨块的磨削速度和压力对材料去除特性的影响规律。结果表明:相同压力时,材料去除率随磨削速度增加呈先增大后减小的趋势,亚表面损伤深度逐渐变小;随法向压力增大,亚表面损伤深度变化不明显;在5N压力下,表面粗糙度值Ra变化明显,由6.4 μm减小到3.2 μm;而10 N压力下,Ra无明显变化。   相似文献   

5.
Development of advanced ceramics such as silicon carbide has gained significant importance because of their desirable properties. However, their engineering applications are still limited owing to the limitations in developing damage-free and economical machining techniques. It is often desired to increase the machining rate to improve productivity while maintaining the desired surface integrity. The success of this approach, however, requires a fundamental understanding of the material removal and damage formation mechanism in grinding. In this paper, high removal rate grinding of silicon carbide was investigated with respect to material removal and basic grinding parameters using a diamond grinding wheel. The results showed that the material removal was primarily due to the microfracture and grain dislodgement under the grinding conditioned selected. For grain dislodgement removal mode, the relationship for the removal rate in scratching based on a simple fracture mechanics analysis has been established. This research provides valuable insights into the surface and subsurface integrity and material removal mechanism during high removal rate grinding of silicon carbide.  相似文献   

6.
根据K9光学玻璃的物理化学特性,在干式化学机械磨削(chemical-mechanical grinding,CMG)的基础上,用超声雾化方法产生NaHCO3雾化液参与磨削,研制了适合湿式CMG的磨具,对K9光学玻璃试样进行了化学机械磨削试验,得到了雾化环境下磨削结果最优的CeO2型磨具。在此基础上,采用正交试验法,对比分析工件转速、磨具转速以及雾化液的pH值对K9光学玻璃表面粗糙度和材料去除率的影响。结果表明:工件表面粗糙度受雾化液的酸碱度的影响最强,磨具转速次之,工件转速最弱;对材料去除率的影响,雾化液的酸碱度最强,工件转速次之,磨具转速最弱。使用适量的雾化液可提高加工质量和速度,消除干式CMG产生的粉尘污染,这种方法适于对K9光学玻璃的精加工。   相似文献   

7.
Fine-grained resin bonded diamond tools are often used for ultra-precision machining of brittle materials to achieve optical surfaces. A well-known drawback is the high tool wear. Therefore, grinding processes need to be developed exhibiting less wear and higher profitability. Consequently, the presented work focuses on conditioning a mono-layered, coarse-grained diamond grinding wheel with a spherical profile and an average grain size of 301 µm by combining a thermo-chemical and a mechanical-abrasive dressing technique. This processing leads to a run-out error of the grinding wheel in a low-micrometer range. Additionally, the thermo-chemical dressing leads to flattened grains, which supports the generation of hydrostatic pressure in the cutting zone and enables ductile-mode grinding of hard and brittle materials. After dressing, the application characteristics of coarse-grained diamond grinding wheels were examined by grinding optical glasses, fused silica and glass–ceramics in two different kinematics, plunge-cut surface grinding and cross grinding. For plunge-cut surface grinding, a critical depth of cut and surface roughness were determined and for cross-grinding experiments the subsurface damage was analyzed additionally. Finally, the identified parameters for ductile-machining with coarse-grained diamond grinding wheels were used for grinding a surface of 2000 mm2 in glass–ceramics.  相似文献   

8.
为改善氧化铝陶瓷的磨削效果,分别使用粒度尺寸125~150 μm和38~45 μm的金刚石制备树脂结合剂砂轮,并进行磨削实验,研究表面粗糙度、材料去除方式和材料去除比例随磨削参数的变化规律,观察并分析氧化铝陶瓷磨削后的表面微观形貌。结果表明:氧化铝陶瓷的表面粗糙度可以达到Ra 0.418 μm,材料去除比例可达到95%;用粒度尺寸38~45 μm的金刚石制备的树脂结合剂砂轮在切深≤ 2 μm,工件移动速度为0.15 m/min加工时,材料由延性域的塑性去除转变为脆性去除。优化后的加工工艺为先以磨料粒度尺寸125~150 μm的树脂金刚石砂轮在切深为4 μm时进行初步加工,再用磨料粒度尺寸38~45 μm的树脂金刚石砂轮进行光磨,可以兼顾高效与精密两方面的要求。   相似文献   

9.
In order to investigate the surface and subsurface integrity of diamond-ground optical glasses, a Tetraform ‘C’ machine tool featuring high close-loop stiffness was used to conduct the ultra-precision machining of fused silica and fused quartz assisted with electrolytic in-process dressing (ELID). An acoustic emission (AE) sensor and a piezoelectric dynamometer were used to monitor the grinding process to correlate the processing characteristics with the generated surface and subsurface integrities, which were characterized by atomic force microscope (AFM), scanning electronic microscope (SEM), and nano-indentation technique. Experimental results showed that for optical glasses the fracture toughness value can be used to predict the machinability while its bigger value always means a better surface and subsurface integrity. During the grinding process of optical glasses, the smaller amplitude and RMS values of AE signal, as well as the smaller grinding forces and the ratio of normal force to tangential force, correspond to a better surface and subsurface integrity. With selected machining parameters and a 6–12 μm grain-sized diamond-grinding wheel, nanometric quality surfaces (Ra<5 nm) with minimal subsurface damage depth (< 0.5 μm) can be generated for fused quartz on Tetraform ‘C’.  相似文献   

10.
分析了点磨削加工表面形貌及其精度的几种影响因素.研究发现:砂轮速度和磨削深度对表面粗糙度的影响都可归结为未变形切屑厚度的改变.减小点磨削倾斜角,可以减小未变形切屑厚度,从而得到理想的表面粗糙度.加大磨削深度和轴向进给量可提高材料去除率,但会造成粗糙度增大.这可归结为砂轮有效磨粒数的减少导致工件的表面粗糙度降低.点磨削通过改变倾斜角大小来增加参与磨削的有效磨粒数,保证高材料去除率的同时获得良好表面质量.增加光磨次数和应用倾斜型砂轮都增加了磨粒和工件表面轮廓突峰的接触次数,对于改善表面粗糙度十分有益.  相似文献   

11.
为了探究金刚石器件在机械研磨过程中原子层面的材料表面成形和亚表面损伤机制,利用分子动力学(molecular dynamics,MD)方法建立金刚石多磨粒研磨金刚石工件的模型,仿真研究金刚石材料表面成形的过程,并对比不同研磨深度对研磨力、材料回弹率和材料亚表面损伤的影响规律。分析表明:堆积在磨粒之间的切屑原子具有微研磨的作用,磨粒之间的相变区在研磨的作用下逐渐融合在一起,形成金刚石材料的加工表面;分别以h=0.36 nm、0.71 nm、1.07 nm、1.43 nm的研磨深度进行研磨,研磨深度超过0.71 nm后才能有效抑制金刚石晶体材料回弹,但增大研磨深度会增加金刚石工件表面堆积原子,不能改善其表面研磨质量;研磨深度在0.71 nm范围内的金刚石亚表层损伤较小且稳定,超过0.71 nm的研磨深度会使损伤快速增大,且会出现超过3.00 nm的大纵深损伤。  相似文献   

12.
为了实现粗磨粒金刚石砂轮延性域磨削加工SiC陶瓷材料,采用碟轮对粒径为297~420μm的粗磨粒金刚石砂轮进行了精密修整。然后,使用经过修整好的粗磨粒金刚石砂轮对SiC陶瓷进行磨削加工。在此基础上,对不同的砂轮线速度、工件进给速度、磨削切深对SiC陶瓷表面粗糙度和表面形貌的影响进行了研究。试验结果表明:经过精密修整的粗磨粒金刚石砂轮是能够实现SiC陶瓷材料的延性域磨削的,表面粗糙度值Ra达到0.151μm;随着砂轮线速度增大、工件进给速度和磨削切深减小,SiC陶瓷表面的脆性断裂减小,塑性去除增加。  相似文献   

13.
Zerodur glass-ceramic materials have been widely used in optical, opto-electronic and precision engineering industries; their efficient ultraprecision machining, with extremely low surface roughness and high form accuracy, is in great demand in those fields. The authors have been conducting studies on realizing high-quality surface and form accuracy of zerodur glass-ceramic materials efficiently by use of electrolytic in-process dressing (ELID) grinding process. This paper proposes a new grinding mode in which top surface and sides of zerodur block were ground by cylindrical surface and side surface of grinding wheel. Grinding experiments were carried out using #1200, #2000 and #4000 diamond cast-iron bond wheels, and grinding characteristics such as grinding performance, ground surface roughness, surface topographies and perpendicularity between ground surfaces were investigated. Experiments on grinding using #4000 wheel successfully produced smooth top surface and side surfaces that were about 10 nmRa in surface roughness, 1.5 μm/□400×400 mm2 in flatness and 90°±6″ in perpendicularity. AFM observation of the ground surface also showed that material removal in the ductile mode occurs for fine abrasive wheels. The results showed that grinding was stable without severe clogging for wheels by choosing suitable ELID parameters and grinding conditions.  相似文献   

14.
根据磨削参数协同分析的结果,在保证磨粒运动轨迹一致的情况下,进行基于磨削速度的单因素平面磨削实验。利用试件角度抛光、SEM检测亚表面裂纹层的深度。实验结果显示:随着砂轮转速的提高,亚表面裂纹层的深度呈下降趋势;当砂轮转速从500 r/min逐渐提高到2500 r/min时,亚表面裂纹层的最大深度的平均值下降达25 μm左右;光学玻璃平面磨削实验结果表明,光学玻璃磨削磨削速度是影响磨削过程中光学玻璃材料亚表面裂纹层深度的重要因素,磨削速度对光学玻璃亚表面裂纹生成有重要影响。   相似文献   

15.
Conditioning and monitoring of grinding wheels   总被引:1,自引:0,他引:1  
  相似文献   

16.
基于阵列微孔的微结构砂轮和普通砂轮对氧化铝、氮化铝、氧化锆及氮化硅陶瓷材料的不同磨削性能,对比研究不同砂轮和不同陶瓷材料的磨削力、比磨削能、表面粗糙度及表面崩边特征。结果表明:相比普通砂轮,微结构砂轮提高了氧化铝、氮化铝及氧化锆陶瓷的磨削力和比磨削能,降低了表面粗糙度,而对氮化硅陶瓷的磨削力及表面粗糙度影响不明显;相比其他陶瓷,氮化硅陶瓷具有较高的磨削力和比磨削能。从磨削加工表面特征上看,氧化铝、氮化铝陶瓷以脆性去除方式为主,氧化锆以塑性去除为主,而氮化硅则兼具塑性和脆性去除特征;微结构砂轮加工表面崩边尺寸大于普通砂轮的崩边尺寸,氧化铝和氮化铝陶瓷的表面崩边尺寸明显大于氧化锆和氮化硅陶瓷的。   相似文献   

17.
对磨削法修磨复杂形面金刚石磨料工具的技术进行研究。使用光学影像磨床,采用形面组合法对典型复杂形面金刚石工具进行修磨应用试验;通过理论分析、试验以及对修磨形貌显微观察等手段分析修磨机理;对修磨基本工艺、修磨效率和修磨精度的影响进行试验研究,并确定其相关规律。研究结果表明:磨削法修磨去除机理是通过磨粒接触面内局部接触点产生的高应力使金刚石表面发生微破碎,因此采用基于磨削法的精密修磨技术具有高效率和高精度的优点;对修整效果的主要影响因素是修磨切深、修磨速度、修磨砂轮等;单一元素形面修磨精度可以达到0.002 5 mm,角度5′以内,整体形面轮廓精度可以达到0.005 mm以内,修整砂轮后采用切入磨削工件加工,其表面粗糙度可以达到0.120 μm以下。   相似文献   

18.
针对超精密磨削加工过程对工件材料去除效率、表面质量、亚表面损伤等指标的复合需求,提出一种基于泰勒多边形设计的随机网格结构固结磨料磨盘(textured-fixed abrasive plate, T-FAP),并以光固化树脂作为结合剂基体材料混合微米级氧化铝磨料制备磨盘,使用MATLAB图像分析和磨抛轨迹仿真方法研究磨盘磨削过程中表面磨损时变图案特征对其加工性能的影响,并通过铝制工件的平面磨削实验对磨盘磨削过程中的材料去除率及工件表面粗糙度进行分析。实验结果表明:相比传统固结磨料磨盘,采用随机网格结构磨盘加工的工件表面粗糙度为0.84 μm,材料去除率为3.21 μm/min,能够在保证材料去除率的同时获得较高的表面精度。   相似文献   

19.
1. Introduction The monocrystalline silicon wafer, as an impor-tant substrate of the integrated circuit, is widely used in IC manufacturing. Various processes are needed to transfer a silicon crystal ingot into wafers. Silicon crystallizes in the diamond lattice, with covalent bonding, ensuring an extremely stable spatial ar-rangement of the Si atoms in the monocrystal. It is a brittle material. Most processes can induce me-chanical damage. The depth and nature of the sub-surface damage will…  相似文献   

20.
A comprehensive statistical analysis of the factors controlling surface quality and form in ultra-precision grinding of polycrystalline lead zirconate titanate (PZT) ceramics has been conducted. The work focuses on practical grinding conditions and it includes an assessment of the interactions that exist between the method of material removal and the machine design. In the first phase of experimentation, defects including porosity and the fractural damage induced in the subsurface area were investigated. Machining trials were then conducted which were used to highlight the significant technical factors or combinations of technical factors that influence surface roughness, surface flatness and textural damage. A model for the systematic material removal mechanism which suggests that a relatively large depth of cut and ‘soft contact’ can be used to achieve improved surface integrity is proposed. In order to verify the suggested model, a series of design modifications to the tooling structure were made and the nature of the contact at the material removal interface was studied. Dramatic improvements in surface quality were achieved by incorporating a compliant polymer layer into the vacuum chuck used to hold the ceramics during grinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号