首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
本文研究了电感耦合等离子体原子发射光谱技术测定热压铁中二氧化硅等8种成分检测方法,对热压铁样品的处理方法、铁基体的干扰及校正、分析谱线和方法检出限,仪器分析参数的选择进行了试验和优化,建立了电感耦合等离子体原子发射光谱技术测定热压铁中二氧化硅、氧化钙、氧化镁、三氧化二铝、铜、磷、钒、钛等8种元素含量分析方法。精密度试验显示相对标准偏差在0.59%~2.15%之间,5个热压铁标准样品中二氧化硅、氧化钙、氧化镁、三氧化二铝和磷含量测定值与标准值相吻合,铜、钒和钛元素加标回收率在95.0%~103.0%之间。  相似文献   

2.
将白云石、石灰石标准样品直接压片,通过灼烧减量对氧化钙、氧化镁和二氧化硅含量进行校正,根据其含量与强度的对应关系绘制校准曲线,建立了X射线荧光光谱测定白云石、石灰石中这3种主要成分的方法。对一部分试样直接压片测定,同时另一部分试样进行灼烧减量试验,可大大节约标准样品的用量。灼烧时间试验表明,试样在1100℃下灼烧0.5 h就可达到恒重;粒度试验表明,样品粒度大于200目时可消除粒度效应的影响。用CaO和MgO含量进行基体校正,可消除其对低含量SiO_2的影响;采用经验系数法可消除元素间的吸收-增强效应。精密度试验果表明,氧化钙、氧化镁和二氧化硅测定结果的相对标准偏差(n=8)在0.038%~3.5%之间;对石灰石和白云石标准样品和实际样品进行准确度考察,测定值与认定值或滴定法的测定值一致。  相似文献   

3.
乔蓉  郭钢 《冶金分析》2014,34(1):75-78
将白云石、石灰石标准样品直接压片, 通过灼烧减量对氧化钙、氧化镁和二氧化硅含量进行校正, 根据其含量与强度的对应关系绘制校准曲线, 建立了X射线荧光光谱法(XRF)测定白云石、石灰石中这3种主要成分的方法。对一部分试样直接压片测定, 同时另一部分试样进行灼烧减量试验, 可大大节约标准样品的用量。灼烧时间试验表明, 试样在1 100 ℃下灼烧0.5 h就可达到恒重;粒度试验表明, 样品粒度大于200目时可消除粒度效应的影响。用CaO和MgO含量进行基体校正, 可消除其对低含量SiO2的影响;采用经验系数法可消除元素间的吸收-增强效应。精密度试验结果表明, 氧化钙、氧化镁和二氧化硅测定结果的相对标准偏差(n=8)在0.038%~3.5%之间;对石灰石和白云石标准样品和实际样品进行准确度考察, 测定值与认定值或滴定法的测定值一致。  相似文献   

4.
羊绍松 《冶金分析》2015,35(4):25-29
通过石灰石标准样品高温灼烧后绘制校准曲线,解决了绘制校准曲线用活性类石灰无标准样品,又难同时准备足够多且有梯度生产样品等难题;烧结用石灰样品经高温灼烧后压片制样,大大减小了石灰样品基体干扰并完全消除粒度效应,从而实现粉末压片-X射线荧光光谱法对石灰石、活性石灰、生石灰中氧化钙、氧化镁和二氧化硅含量的测定。氧化钙、氧化镁和二氧化硅校准曲线的相关系数均大于0.999。对同一活性石灰样品进行精密度考察,3种组分测定结果的相对标准偏差(RSD,n=11)在0.086%~2.3%范围内。对生石灰、活性石灰炼铁烧结工序生产样品进行分析,测定值与熔融制样-X射线荧光光谱法的测定值一致;对石灰石标准样品进行分析,测定值与校正后的认定值相吻合。  相似文献   

5.
任保林 《冶金分析》2015,35(7):79-83
以四硼酸锂-碳酸锂为熔剂,碘化铵做脱模剂,熔融法制备样品,建立了X射线荧光光谱法(XRF)测定钒渣、钒渣熟料、提钒尾渣中二氧化硅、三氧化二铝、氧化钙、氧化镁、氧化锰、五氧化二钒、氧化铬、磷、二氧化钛和全铁的分析方法。试验表明,在试样量为0.25 g、稀释比(m样品m熔剂)为1∶20、脱模剂用量为20 mg时熔样效果最佳。采用经验系数法对基体效应进行校正及谱线重叠干扰校正,测定钒渣样品各组分的相对标准偏差(RSD,n=10)在0.10%~1.9%之间,检出限在35~460 μg/g之间。用标准物质和实际样品验证,测定结果与标准物质认定值和实际样品湿法测定值相符,能够满足日常分析的要求。  相似文献   

6.
宋新艳 《山东冶金》2002,24(5):54-56
采用过氧化钠为熔剂 ,在铁坩埚内进行快速熔融 ,对白云石中二氧化硅、氧化钙、氧化镁进行系统分析。与原标准方法相比 ,本方法具有操作简单、准确性好、分析速度快、分析成本低、测定范围宽等特点。  相似文献   

7.
冯晓军  姜威  薛菁  史鑫 《冶金分析》2017,37(5):53-58
样品采用偏硼酸锂熔剂,加入溴化锂脱模剂、硝酸锂氧化剂在1 050℃高频熔样机上熔融4min,硝酸酸化提取定容后,采用基体匹配法配制校准曲线消除基体效应的影响,选取高盐雾化器进样直接用电感耦合等离子体原子发射光谱法(ICP-AES)测定磷矿中五氧化二磷、氧化镁、氧化铁、氧化铝、二氧化硅、氧化钙、氧化钾、氧化钠、二氧化钛、氧化锰、氧化锶、总硫。试验进行了熔剂与样品的稀释比、脱模剂选择、氧化剂选择、熔样温度、熔样时间、溶液酸度和溶液稳定性等条件试验,确定了最佳试验条件。方法检出限为0.000 2~0.025 8μg/g。按照实验方法测定磷矿样品中五氧化二磷、氧化镁、氧化铁、氧化铝、二氧化硅、氧化钙、氧化钾、氧化钠、二氧化钛、氧化锰、氧化锶、总硫,结果的相对标准偏差(RSD,n=11)为0.48%~1.3%。按照实验方法测定GBW 07210、GBW 07211、GBW 07212共3个磷矿石标准样品中五氧化二磷、氧化镁、氧化铁、氧化铝、二氧化硅、氧化钙、氧化钾、氧化钠、二氧化钛、氧化锰、氧化锶、总硫,测定值与认定值(或者国家标准方法 GB/T 1880—1995的测定值)基本一致。  相似文献   

8.
采用密闭微波消解技术对萤石试样进行预处理,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定萤石中硅、铁、镁、钾、钠(以氧化物计)以及磷、硫含量的分析方法。对试样的溶解进行探讨,结果表明:在微波消解的条件下,采用盐酸、硝酸和氢氟酸消解试样,样品溶解完全,且避免了硫、磷、硅等非金属元素的挥发损失。绘制校准曲线时采用在部分标准样品溶液中加入适量的氧化钾、硫、磷标准溶液和使用氧化钾、硫、磷及氧化镁含量范围宽的国外标准样品,使氧化钾、硫、磷及氧化镁的分析范围得到扩大。实验方法应用于萤石标准样品和实际样品的分析,测定值与认定值或X射线荧光光谱法(XRF)测定值一致,相对标准偏差 (RSD, n=10) 除磷外均小于5.0%。在样品中加入各成分的标准溶液进行加标回收试验,测得回收率为91.5%~109.0%。  相似文献   

9.
报道了NORDTEST不确定度评定在熔融制样 X射线荧光光谱法测定岩石样品中10种主次成分(氧化钠、氧化镁、三氧化二铝、二氧化硅、五氧化二磷、氧化钾、氧化钙、二氧化钛、氧化锰和三氧化二铁)分析结果中的应用。依据NORDTEST规则, 对3个国家一级标准物质GBW07104、GBW07105和GBW07106进行10个组分分析结果不确定度的评估。发现具有明显浓度梯度的二氧化硅的浓度与求得的相对不确定度具有很好的相关性, 相关系数R2=0.953 9。单个标准物质与3个标准物质求出的相对不确定度, 除了低含量组分的差别较大外, 其余组分的不确定度结果接近。  相似文献   

10.
王鹏辉 《冶金分析》2012,32(5):70-74
高炉渣试样用热的稀硝酸加氢氟酸分解完全后,取3份试液,其中1份试液用盐酸调节酸度后,在680nm波长处用硅钼蓝差示光度法测定二氧化硅含量,另外两份试液分别以钙指示剂和PAN指示剂指示滴定终点,用EDTA滴定法测定氧化钙及氧化钙和氧化镁合量,然后用差减法求得氧化镁的含量。用本法测定了高炉渣试样和标样中二氧化硅、氧化钙和氧化镁含量,并将本法的测定结果与X荧光光谱法的测定结果进行对照,结果表明两种方法的测定结果相符。本法测定结果的相对标准偏差≤2.7%(n=8)。  相似文献   

11.
用ICP-AES法同时测定锰矿中氧化钙、氧化镁、钴、镍、锌、铅、铜元素的分析方法,其中氧化钙、氧化镁测量范围:0.10%~15.00%,钴、镍、锌、铅、铜测量范围:0.001%~0.500%,选用元素分析谱线和仪器进行测定,相对标准偏差较小,回收率在95.92%~ 102%之间.该法测定锰矿中氧化钙、氧化镁、钴、镍、锌、铅、铜含量的分析误差和精密度符合企业标准技术要求,结果令人满意,方法快速、简便.  相似文献   

12.
建立了X射线荧光光谱法测定石灰石、冶金石灰中氧化钙、氧化镁、二氧化硅和磷的方法。试样以四硼酸锂做熔剂、溴化铵做脱模剂制备玻璃熔片,以标准物质和高纯碳酸钙制备标准样片做校正曲线,应用基本参数法进行校正回归,试样测定结果的相对标准偏差(n=10)RSD在0.20%~3.50%之间。用化学法同时进行比对试验,两种方法的测定结果相符,满足石灰石、冶金石灰的检测需求。  相似文献   

13.
石灰石、白云石样品与混合熔剂(Li2B4O7-LiBO2-LiBr)稀释比为1∶8,硝酸锂做氧化剂、950 ℃熔融20 min制备玻璃片,应用X射线荧光光谱法(XRF)测定石灰石、白云石中氧化钙、氧化镁、二氧化硅、三氧化二铝、三氧化二铁、氧化锰、磷、硫、二氧化钛、氧化锶、氧化钾和氧化钠12种组分。通过标准样品、光谱纯物质、标准样品与标准溶液合成样品及化学定值样品制作校准曲线并进行分段回归。应用康普顿散射线校正铁、锰、锶元素,经验系数法校正其他9种元素,可有效克服石灰石、白云石中各组分测定时基体效应的影响。对样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=10)在0.18%~11.4%之间。对标准样品及未知样品进行正确度考察,测定值与认定值或湿法值一致。  相似文献   

14.
本文采用熔融制样X射线荧光光谱法测定菱镁石粉中的主要元素二氧化硅、氧化钙、氧化镁含量。利用X射线荧光分析仪中的"平衡"功能,对实际样品无需进行灼烧处理,相比于化学法,具有更加快速的实验效果,通过与化学法和标准物质进行验证,准确性能够满足要求,本法是采用四硼酸锂-偏硼酸锂混合熔剂直接与样品进行熔融,饱和溴化锂做为脱模剂。用菱镁石粉标样,水镁石和白云石混合标样建立分析曲线,对实际生产样品进行验证,准确性和精密度可达到日常检验要求。  相似文献   

15.
采用熔融制样-X射线荧光光谱分析法测定冶金石灰中氧化钙、二氧化硅、氧化镁、磷、硫的含量。通过分析熔剂、脱模剂、稀释比、熔融时间、熔融温度等因素对测定结果的影响,确定了最佳实验条件,同时采用标准样品及自制合适含量的标准样品进行了各元素校准工作曲线的绘制,其相关系数均达到0.999以上。采用实验方法测定实验样品,结果表明各元素测定值与理论值满足允许差要求,精密度实验中各元素相对标准偏差均小于5%,具有较高的准确度及精密度。该方法在进行熔融样品制备时不需要灼烧减量的操作,大大简化了实验流程,有效提高了工作效率,具有一定的推广应用价值。  相似文献   

16.
铝矾土中各组分的准确测定对指导实际炼钢生产具有很重要的作用。实验以35.3%(质量分数)四硼酸锂-64.7%(质量分数)偏硼酸锂为混合熔剂,以碘化铵溶液为脱模剂,在铂-金坩埚中熔融制备成玻璃样片,通过理论系数法和经验系数法进行吸收/增强校正,建立了X射线荧光光谱法(XRF)测定铝矾土中二氧化硅、氧化铝和三氧化二铁的方法。对样品与熔剂的稀释比、熔融温度、脱模剂种类及其用量进行了优化,结果表明:控制样品与熔剂的稀释比为1∶10,以13~15滴300g/L碘化铵溶液为脱模剂,在1080℃熔融16min,制得的玻璃片均匀、透明、无气泡,符合测定要求。为保证校准曲线中二氧化硅、氧化铝、三氧化二铁这3种组分具有足够宽的含量范围和适当的含量梯度,选用矾土标准样品YSS066-2013、YSS067-2013、YSS068-2013以及由这3种标准样品按照一定质量比例混合配制成的人工合成校准样品绘制校准曲线,结果表明,各待测组分校准曲线的线性相关系数均大于0.998。二氧化硅、氧化铝和三氧化二铁的检出限分别为0.004%、0.015%和0.0026%。将实验方法应用于铝矾土实际样品中二氧化硅、氧化铝和三氧化二铁的测定,结果的相对标准偏差(RSD,n=12)在0.41%~1.2%之间。采用实验方法分别对2个铝矾土实际样品和3个由矾土标准样品YSS066-2013、YSS067-2013、YSS068-2013按照一定质量比例混合配制成的人工合成样品进行测定,测得结果与滴定法或理论值基本一致。  相似文献   

17.
本文探讨了灼减X-射线荧光光谱法在高硫铝土矿组分分析中的应用。拟定的分析方法用于生产样品分析,其测量结果与化学值吻合,高硫铝土矿中各组分的标准偏差均小于1%,可以用于实际生产控制分析。铝土矿测量范围(%):二氧化硅:5.40~20.92,氧化钙:0.052~0.925,氧化镁:0.024~0.205,氧化铝:37.45~71.49,氧化铁:1.82~29.05,氧化钾:0.032~1.792。氧化钠:0.032~0.06,氧化钛:0.68~3.38。  相似文献   

18.
王璐  边立槐 《天津冶金》2011,(4):56-58,70
用硝酸、氢氟酸溶解样品,加入过量氟化钾生成氟硅酸钾沉淀,过滤后加热水使氟硅酸钾水解,用氢氧化钠标准溶液滴定产生的氢氟酸,计算样品中二氧化硅的含量。氟硅酸钾容量法测定高炉渣中的二氧化硅含量,分析精度高,速度比高氯酸脱水重量法快,是一种较好的高炉渣二氧化硅分析方法。  相似文献   

19.
以过氧化钠为熔剂 ,于铁坩埚内进行快速熔融试样 ,熔块以水浸取 ,硝酸溶解盐类 ,对铁矿石、球团矿、烧结矿中二氧化硅、氧化钙、氧化镁、三氧化二铝进行系统分析。与国家标准方法相比 ,本法具有操作简便 ,准确性好 ,速度快 ,成本低 ,测定范围宽等特点  相似文献   

20.
利用DSC、XRD,结合热焓分析对硅钢级氧化镁和二氧化硅的固相反应行为进行了研究。比较了不同二氧化硅原料及混合方法对硅钢级氧化镁反应性的影响,找到了一种更为有效的硅钢级氧化镁反应性的评估方法,克服了传统柠檬酸活性法在比较不同厂家生产的氧化镁的反应性上的局限性。进一步研究了Na_2B_4O_7添加剂、TiO_2添加剂对氧化镁和二氧化硅反应行为的影响,结果表明,Na_2B_4O_7添加剂含量的增加对反应有利,而TiO_2添加剂对反应有阻碍作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号