首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The core of cognitive radio paradigm is to introduce cognitive devices able to opportunistically access the licensed radio bands. The coexistence of licensed and unlicensed users prescribes an effective spectrum hole‐detection and a non‐interfering sharing of those frequencies. Collaborative resource allocation and spectrum information exchange are required but often costly in terms of energy and delay. In this paper, each secondary user (SU) can achieve spectrum sensing and data transmission through a coalitional game‐based mechanism. SUs are called upon to report their sensing results to the elected coalition head, which properly decides on the channel state and the transmitter in each time slot according to a proposed algorithm. The goal of this paper is to provide a more holistic view on the spectrum and enhance the cognitive system performance through SUs behavior analysis. We formulate the problem as a coalitional game in partition form with non‐transferable utility, and we investigate on the impact of both coalition formation and the combining reports costs. We discuss the Nash Equilibrium solution for our coalitional game and propose a distributed strategic learning algorithm to illustrate a concrete case of coalition formation and the SUs competitive and cooperative behaviors inter‐coalitions and intra‐coalitions. We show through simulations that cognitive network performances, the energy consumption and transmission delay, improve evidently with the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, channel assignment for spectrum sensing is studied in multi‐channel cognitive radio (CR) networks to maximize the number of channels satisfying sensing performance (called available channels). Beginning with a nonlinear integer programming problem, we derive the upper bound of optimal value through many‐to‐many assignment problem and then propose three algorithms for both centralized and distributed scenarios. In centralized case, a heuristic scheme is proposed based on the signal‐to‐noise ratios (SNRs) over all primary channels (PCs). Then, a greedy scheme is proposed to reduce the reported information from the CRs. In distributed case, a novel scheme with multi‐round operation is designed following the coalitional game theory. In each round, each CR selects some PCs based on SNRs. Then, the CRs selecting the same channel play coalitional game, and thereby, multiple games are played concurrently over multiple channels. Finally, the best coalition for each channel is chosen among the formed coalitions to perform the cooperative spectrum sensing. The simulation results show that the proposed schemes can significantly increase the number of available channels. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we study a coalitional game approach to resource allocation in a multi-channel cooperative cognitive radio network with multiple primary users (PUs) and secondary users (SUs). We propose to form the grand coalition by grouping all PUs and SUs in a set, where each PU can lease its spectrum to all SUs in a time-division manner while the SUs in return assist PUs’ data transmission as relays. We use the solution concept of the core to analyze the stability of the grand coalition, and the solution concept of the Shapley value to fairly divide the payoffs among the users. Due to the convexity of the proposed game, the Shapley value is shown to be in the core. We derive the optimal strategy for the SU, i.e., transmitting its own data or serving as a relay, that maximizes the sum rate of all PUs and SUs. The payoff allocations according to the core and the Shapley value are illustrated by an example, which demonstrates the benefits of forming the grand coalition as compared with non-coalition and other coalition schemes.  相似文献   

4.
In cognitive radio networks, Secondary Users (SUs) can access the spectrum simultaneously with the Primary Users (PUs) in underlay mode. In this case, interference caused to the licensed users has to be effectively controlled. The SUs have to make spectrum access decisions in order to enhance their quality of service, but without causing harmful interference to the coexisting PUs. In this paper, we propose a cooperative spectrum decision, which enables the SUs to share the spectrum with the PUs more efficiently. Our approach is based on a new coalitional game in which the coalition value is a function of the SUs' spectral efficiencies, the inter‐SUs interference, and the interference caused to the PUs. By applying new Enter and Leave rules, we obtain a stable coalition structure. Simulation results show that the SUs' spectral efficiencies are considerably increased and that the interference caused to the coexisting PU is reduced by about 7.5% as compared to an opportunistic spectrum access scheme. Moreover, the proposed coalitional game results in a more balanced spectrum sharing in the network. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In a cognitive radio network, cooperative communications between a primary user (PU) and a second user (SU) may be able to significantly improve the spectrum utilization, and thus, the network performance. To be specific, the PU can select a number of SUs as its relays to cooperatively transmit its data. In turn, these relays can be granted access to the licensed channel of the PU to transmit their data. In this paper, an effective cooperation strategy for SUs is presented. We formulate the problem of cooperative relay selection as a coalition formation game, and develop a utility function based on the game. The utility function considers various factors such as transmission power and noise level. With the utility function, a distributed coalition formation algorithm is proposed, which can be used by SUs to decide whether to join or leave a coalition. Such a decision is based on whether it can increase the maximal coalition utility value. We rigorously prove that our proposed coalition formation algorithm can terminate and reach a stable state. Finally, this paper demonstrates that the proposed scheme is able to enhance the network throughput via a simulation study.  相似文献   

6.
Spectrum sensing is the most critical task in cognitive radio (CR) which needs to be performed very precisely in order to efficiently utilize the underutilized spectrum and to provide sufficient protection to the primary users (PUs). To improve the sensing performance under fading, shadowing and hidden terminal problems more than one CR users collaboratively perform the spectrum sensing called as cooperative spectrum sensing (CSS). In conventional CSS the decision of each CR is fused at fusion center with equal weights. But due to variable distance of each CR from the PU all decisions are not equally reliable and therefore should be assigned different weights according to their reliability. In this paper we propose a new weighting scheme for CSS under Rayleigh faded channel. In proposed weighting scheme, based on the distance of each CR from the PU reliability of CR nodes is determined and correspondingly appropriate weights are assigned to different users. The CSS algorithm using new weighting scheme gives better performance than conventional CSS algorithm.  相似文献   

7.
Reliable spectrum detection of the primary user (PU) performs an important role in the cognitive radio network since it’s the foundation of other operations. Spectrum sensing and cognitive signal recognition are two key tasks in the development of cognitive radio (CR) technology in both commercial and military applications. However, when the CR terminals receiving signals have little knowledge about the channel or signal types, these two tasks will become much more difficult. In this paper, we propose a reliable cooperative spectrum detection scheme, which combines the cooperative spectrum sensing with distributed cognitive signal recognition. A novel improved cooperative sensing algorithm is achieved by using a credibility weight factor and the “tug-of-war” rule, which is based on the double threshold detection and Dempster–Shafer theory, to determine whether the PU signals exist. In this scheme, cognitive signal recognition can be used to identify the signal type when the PU signal is present. During the cognitive signal recognition processing, the CR terminals make local classification of the received signals by using Daubechies5 wavelet transform and Fractional Fourier Transform, and send their recognition results to the globe decision making center. A distributed processing uses these cognitive terminals’ local results to make final decisions under the Maximum Likelihood estimation algorithm. Simulation results show that the proposed method can achieve good sensing probability and recognition accuracy under the Additive White Gaussian Noise channel.  相似文献   

8.
Cognitive Radio Network (CRN) has been proposed in recent years to solve the spectrum scarcity problem by exploiting the existence of spectrum holes. One of the important issues in the cellular CRNs is how to efficiently allocate primary user (PU) spectrum inside a CRN cell without causing harmful interference to PUs. In this paper, we present a cross-layer framework which jointly considers spectrum allocation and relay selection with the objective of maximizing the minimum traffic demand of secondary users (SUs) in a CRN cell. Specifically, we consider (1) CRN tries to utilize PU spectrum even when the CRN cell is not completely outside the protection region of the PU cell, and (2) cooperative relay is used in cellular CRNs to improve the utilization of PU spectrum. We formulate this cross-layer design problem as a Mixed Integer Linear Programming (MILP) and propose a low complexity heuristic algorithm to solve it. Compared to a simple channel allocation scheme, the numerical results show a significant improvement by using our proposed method and the performance is close to the optimal solution. We further consider the spectrum allocation among several CRN cells with the objective of maximizing the overall minimum throughput of all cells while ensuring each individual cell’s minimum throughput requirement. A low complexity algorithm is proposed to achieve the objective with satisfactory performance.  相似文献   

9.
To decrease the interference to the primary user (PU) and improve the detected performance of cognitive radio (CR), a single‐band sensing scheme wherein the CR periodically senses the PU by cooperative spectrum sensing is proposed in this paper. In this scheme, CR first senses and then transmits during each period, and after the presence of the PU is detected, CR has to vacate to search another idle channel. The joint optimization algorithm based on the double optimization is proposed to optimize the periodical cooperative spectrum sensing scheme. The maximal throughput and minimal search time can be respectively obtained through the joint optimization of the local sensing time and the number of the cooperative CRs. We also extend this scheme to the periodical wideband cooperative spectrum sensing, and the joint optimization algorithm of the numbers of the sensing time slots and cooperative CRs is also proposed to obtain the maximal throughput of CR. The simulation shows that the proposed algorithm has lower computational quantity, and compared with the previous algorithms, when SNR = 5 dB, the throughput and search time of the proposed algorithm can respectively improve 0.3 kB and decrease 0.4 s. The simulation also indicates that the wideband cooperative spectrum sensing can achieve higher throughput than the single‐band cooperative spectrum sensing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Cooperative spectrum sensing in cognitive radio is investigated to improve the detection performance of Primary User(PU).Meanwhile,cluster-based hierarchical cooperation is introduced for reducing the overhead as well as maintaining a certain level of sensing performance.However,in existing hierarchically cooperative spectrum sensing algorithms,the robustness problem of the system is seldom considered.In this paper,we propose a reputation-based hierarchically cooperative spectrum sensing scheme in Cognitive Radio Networks(CRNs).Before spectrum sensing,clusters are grouped based on the location correlation coefficients of Secondary Users(SUs).In the proposed scheme,there are two levels of cooperation,the first one is perfonned within a cluster and the second one is carried out among clusters.With the reputation mechanism and modified MAJORITY rule in the second level cooperation,the proposed scheme can not only relieve the influence of the shadowing,but also eliminate the impact of the PU emulation attack on a relatively large scale.Simulation results show that,in the scenarios with deep-shadowing or multiple attacked SUs,our proposed scheme achieves a better tradeoff between the system robustness and the energy saving compared with those conventionally cooperative sensing schemes.  相似文献   

11.
Much interest in Cognitive Radio Networks (CRNs) has been raised recently by enabling unlicensed (secondary) users to utilize the unused portions of the licensed spectrum. CRN utilization of residual spectrum bands of Primary (licensed) Networks (PNs) must avoid harmful interference to the users of PNs and other overlapping CRNs. The coexisting of CRNs depends on four components: Spectrum Sensing, Spectrum Decision, Spectrum Sharing, and Spectrum Mobility. Various approaches have been proposed to improve Quality of Service (QoS) provisioning in CRNs within fluctuating spectrum availability. However, CRN implementation poses many technical challenges due to a sporadic usage of licensed spectrum bands, which will be increased after deploying CRNs. Unlike traditional surveys of CRNs, this paper addresses QoS provisioning approaches of CRN components and provides an up-to-date comprehensive survey of the recent improvement in these approaches. Major features of the open research challenges of each approach are investigated. Due to the extensive nature of the topic, this paper is the first part of the survey which investigates QoS approaches on spectrum sensing and decision components respectively. The remaining approaches of spectrum sharing and mobility components will be investigated in the next part.  相似文献   

12.
Security issues of spectrum sensing have drawn a lot of attentions in Cognitive radio networks (CRNs). Malicious users can m islead the network to m ake wrong decision about the states of channels by tampering spectrum sensing data. To defense against Spectrum sens-ing data falsification (SSDF) attack, we propose a neighbor detection-based spectrum sensing algorithm in distributed CRNs, which can detect attackers with the help of neigh-bors during spectrum sensing to improve the accuracy of decision making. The proposed scheme can also guarantee the connectivity of the network. Simulation results illus-trate that the proposed scheme can defense against SSDF attacks effectively and reach the unified information of spectrum sensing data.  相似文献   

13.
谈程  吉庆兵 《通信技术》2015,48(1):51-55
本文研究准静态衰落环境下多用户OFDM协作通信网络能量效率问题,分别在非协作和协作传输情形下建立了能量效率模型。引入联盟博弈理论,根据用户协作关系建立联盟,提出一种联盟合并算法,结合SQP功率分配算法,联盟能量效率能有效提高。  相似文献   

14.
在认知无线电网络中,传统的次级用户随机选择信道进行感知,这在电池供电的认知无线电网络中会造成能量的浪费。研究了协作频谱预测下的能量有效性设计,次级用户采用协作频谱预测的方式会极大地提高感知到空闲信道的能力,进而成功地进行数据传输。仿真了在不同的频谱预测能量消耗、频谱预测错误概率和协作用户数量下的能量有效性,结果表明协作频谱预测能量有效性优于传统非协作频谱预测。  相似文献   

15.
Cognitive radio has attracted considerable attention as an enabling technology for addressing the problem of radio frequency shortages. In cognitive radio networks (CRNs), secondary users (SUs) are allowed to opportunistically utilize the licensed spectrum bands of primary users (PUs) when these bands are temporarily unused. Thus, SUs should monitor the licensed spectrum bands to detect any PU signal. According to the sensing outcomes, SUs should vacate the spectrum bands or may use them. Generally, the spectrum sensing accuracy depends on the sensing time which influences the overall throughput of SUs. That is, there is a fundamental tradeoff between the spectrum sensing time and the achievable throughput of SUs. To determine the optimal sensing time and improve the throughput of SUs, considerable efforts have been expended under the saturated traffic and ideal channel assumptions. However, these assumptions are hardly valid in practical CRNs. In this paper, we provide the framework of an 802.11-based medium access control for CRNs, and we analyze this framework to find the optimal spectrum sensing time under the saturated and unsaturated traffic condition. Through simulation, the proposed analytic model is verified and the fundamental problem of the sensing-throughput tradeoff for CRNs is investigated.  相似文献   

16.
频谱感知是认知无线电(CR)的关键技术之一。在该机制中,对主用户(PU)信号的可靠检测是实现CR的前提。提出一种基于自适应决策融合的合作频谱感知算法用于频谱感知,该算法通过估计PU的先验概率与各个CR用户(SU)的漏检及虚警概率,然后运用Chair-Varshney准则对局部判决进行决策融合以得到全局判决。仿真结果表明,采用该方案的全局虚警和漏检概率明显低于单个SU,可有效提高CR系统频谱感知的可靠性。  相似文献   

17.
Recently, cognitive radio (CR) access has received much attention to overcome spectrum scarcity problem. Spectrum sensing methods are often used for finding free channels to be used by CR. In this paper, the problem of cooperative spectrum sensing will be investigated in CR networks over realistic channels. This problem is not clarified until now by taking into account the error effect on the decision reporting. The analytical expressions of the hard and softened one bit and two bits hard combination scheme for cooperative spectrum sensing will be derived. These expressions are investigated to compare with simulation results. The analysis and simulation results show that the performance of cooperative spectrum sensing is limited by the probability of reporting errors. Moreover, it is shown that there is a significant performance loss when a final decision regarding to primary user’s (PU) state made at the fusion depends on a set of local spectrum sensing information that are distorted by imperfect reporting channels during transmission. The probability of detection is degraded due to imperfect reporting channel by 16.5% and 12.2% with one bit hard combination and softened two bits hard combination, respectively. To reduce this performance loss, Amplify and Forward (AAF) relying mechanism will be proposed. The probability of detection is improved by 8% and 9.3% with one bit hard combination and softened two bits hard combination, respectively using AAF relaying mechanism.  相似文献   

18.
Without an efficient way to achieve the reliability of the decision, the implementation of weighted data fusion is limited in the hard decision combination for cooperative spectrum sensing. To address this problem, a new cooperative spectrum sensing scheme based on the location information of the primary user (PU) and cognitive radio (CR) is proposed. In the new scheme, depending on the location information, the channel condition between the PU and each CR is obtained at the fusion center (FC), with which the local sensing reliability is first achieved. Then we calculate the transmission reliability between the CR and FC. Based on both the local sensing reliability and the transmission reliability, the combining weighting factor is determined for optimal data fusion. On the basis of this proposed scheme, we study the global sensing false alarm and detection probabilities, derive the expressions to obtain the optimal local sensing threshold, and perform an error analysis that demonstrates the impact of imperfect channel knowledge. Using both analytical and simulation methods, we find that the proposed scheme achieves better performance compared with the conventional logical fusion rules in the hard decision combination for cooperative spectrum sensing.  相似文献   

19.
Spectrum sensing is one of the core technologies for cognitive radios(CR),where reliable detection of the signals of primary users(PUs) is precondition for implementing the CR systems.A cooperative spectrum sensing scheme based on an adaptive decision fusion algorithm for spectrum sensing in CR is proposed in this paper.This scheme can estimate the PU prior probability and the miss detection and false alarm probabilities of various secondary users(SU),and make the local decision with the Chair-Varshney rule so that the decisions fusion can be done for the global decision.Simulation results show that the false alarm and miss detection probabilities resulted from the proposed algorithm are significantly lower than those of the single SU,and the performance of the scheme outperforms that of the cooperative detection by using the conventional decision fusion algorithms.  相似文献   

20.
张小盈  朱琦 《信号处理》2020,36(1):77-83
随着移动设备的增多,认知无线电技术诞生,而频谱感知是认知无线电技术中的重要一环。本文将群智感知和频谱感知结合,提出了一种基于Stackelberg博弈的多任务协作频谱感知算法。该算法将融合中心(平台)与次用户分别建模为Stackelberg博弈领导者和从属者。在领导者博弈中,平台给次用户发布最优的报酬值以获得最佳的效用;在从属者博弈中,本文着重考虑了剩余能量对次用户的影响,次用户在平台给的报酬下改变感知时间以获得最优的效用。仿真结果表明,该算法可以提高融合中心对频谱的检测概率。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号