首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
《Ceramics International》2016,42(12):13519-13524
We developed a one-pot in situ synthesis procedure to form nanocomposite of reduced graphene oxide (RGO) sheets anchored with 1D δ-MnO2 nanoscrolls for Li-ion batteries. The as-prepared products were characterized by X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The electrochemical performance of the δ-MnO2 nanoscrolls/RGO composite was measured by galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. The results show that the δ-MnO2 nanoscrolls/RGO composite displays superior Li-ion battery performance with large reversible capacity and high rate capability. The first discharge and charge capacities are 1520 and 810 mAh g−1, respectively. After 50 cycles, the reversible discharge capacity is still maintained at 528 mAh g−1 at the current density of 100 mAh g−1. The excellent electrochemical performance is attributed to the unique nanostructure of the δ-MnO2 nanoscrolls/RGO composite, the high capacity of MnO2 and superior electrical conductivity of RGO.  相似文献   

2.
《Ceramics International》2016,42(13):14963-14969
Nanostructured spinel NiMn2O4 arrays have been fabricated by a facile hydrothermal approach and further investigated as binder-free electrode for high-performance supercapacitors. Compared with Mn3O4, NiMn2O4 exhibited higher specific capacitances (662.5 F g−1 and 370.5 F g−1 in different electrolytes at the current density of 1 A g−1) and excellent cycling stability (~96% capacitance retention after 1000 cycles) in a three-electrode system. Such a novel microstructure grown directly on the conductive substrate provided sufficient active sites for redox reaction resulting in their enhanced electrochemical behaviors. Their improved performances suggested that ultrathin sheet-like NiMn2O4 arrays on Ni foam substrate were a promising electrode material for supercapacitors.  相似文献   

3.
《Ceramics International》2016,42(4):5397-5402
Lithium (Li)-rich layered oxides are considered promising cathode materials for Li-ion batteries because of their favorable properties. Here, we report our recent finding in the novel oxide, aluminum fluoride (AlF3)-modified Li1.2Mn0.54Ni0.13Co0.13O2 (LMNCAF), which was synthesized via a facile, cost-effective and readily scalable solid-state reaction. LMNCAF possess an F and Al co-doped core structure with a LiF nano-coating on its surface which leads to considerably enhancement in the electrochemical performance of the oxide. The initial discharge capacity (at 0.05 C) increased from 212 mA h g−1 for Li1.2Mn0.54Ni0.13Co0.13O2 to 291 mA h g−1 for LMNCAF. A much higher discharge capacity of 211 mA h g−1 was obtained for LMNCAF after 99 charge/discharge cycles at 0.2 C compared with that of Li1.2Mn0.54Ni0.13Co0.13O2 (160 mA h g−1). Our preliminary results suggest that AlF3 modification is an effective strategy to tailor the physicochemical and electrochemical properties of Li-rich layered oxides.  相似文献   

4.
Powdery Mn3O4 and Mn2O3 electrodes with carbon and binding polymer were electrochemically stimulated and activated by successive potential cycles in a mild aqueous electrolyte containing alkali sulfate. The activation of the manganese oxides is affected by the electrode material, milling treatment, potential region, and electrolyte solution. It is found that the ball-milled Mn3O4 electrode demonstrated the highest specific capacitance, 190 F g?1, in 1 mol dm?3 Na2SO4 aqueous solution due to the phase transition from Mn3O4 to electrochemically active birnessite, NayMnO2·nH2O. The increase in capacitance originated from the formation of birnessite possessing highly porous morphology. The nano-structured birnessite demonstrated long cycle life of about 2000 cycles with acceptable capacitance retention of 190–160 F g?1. The birnessite was applied as positive electrode of the asymmetric electrochemical capacitor with activated carbon negative electrode in the mild aqueous solution.  相似文献   

5.
《Ceramics International》2015,41(8):9655-9661
The hollow core–shell ZnMn2O4 microspheres are successfully prepared by a solvothermal carbon templating method and then a annealing process. The crystal phase and particle morphology of resultant ZnMn2O4 microspheres are characterized by XRD and TEM. The electrochemical properties of the ZnMn2O4 microspheres as an anode material are investigated for lithium ion batteries. The results show that the ZnMn2O4 microspheres exhibit a reversible capacity of 855.8 mA h g−1 at a current density of 200 mA g−1 after 50 cycles. Even at 1000 mA g−1, the reversible capacity of the ZnMn2O4 microspheres is still kept at 724.4 mA h g−1 after 60 cycles. The enhanced electrochemical performance suggests the promising potential of the hollow core–shell ZnMn2O4 microspheres in lithium-ion batteries.  相似文献   

6.
《Ceramics International》2017,43(2):2226-2232
A facile route for the synthesis of spinel type NiFe2−xMnxO4-RGO as supercapacitor electrodes is reported and the microstructure, elemental composition/content, morphology and thermal stability of NiFe1.7Mn0.3O4-RGO10 were characterized by XRD, FTIR, ICP, XPS, TEM, and TGA. Uniform NiFe1.7Mn0.3O4 nanospheres were deposited densely on the reduced graphene oxide (RGO) sheets. The as prepared NiFe1.7Mn0.3O4-RGO10 composite showed better electrochemical performance than the corresponding binary metal systems. The spinel structure and the doping of Mn as the third component provided the composite with high specific capacitance of 1214.7 F g−1 at 0.5 A g−1 in a three-electrode system along with good cycling stability.  相似文献   

7.
《Ceramics International》2017,43(2):1968-1974
3D network-like porous MnCo2O4 nanostructures have been successfully fabricated through a facile and scalable sucrose-assisted combustion route followed by calcination treatment. Benefiting from its advantages of the unique 3D network-like architectures with large specific surface area (216.15 m2 g−1), abundant mesoporosity (2–50 nm) and high electronic conductivity, the as-prepared MnCo2O4 electrode displays a high specific capacitance of 647.42 F g−1 at a current density of 1 A g−1, remarkable capacitance retention rate of 70.67% at current density of 10 A g−1 compared with 1 A g−1, and excellent cycle stability (only 6.32% loss after 3000 cycles). The excellent electrochemical performances coupled with facile and cost effective method will render the as-fabricated 3D network-like porous MnCo2O4 as a promising electrode material for supercapacitors.  相似文献   

8.
Graphene nanoribbons (GNRs) with tubular shaped thin graphene layers were prepared by partially longitudinal unzipping of vapor-grown carbon nanofibers (VGCFs) using a simple solution-based oxidative process. The GNR sample has a similar layered structure to graphene oxide (GO), which could be readily dispersed in isopropyl alcohol to facilitate electrophoretic deposition (EPD). GO could be converted to graphene after heat treatment at 300 °C. The multilayer GNR electrode pillared with open-ended graphene tubes showed a higher capacitance than graphene flake and pristine VGCF electrodes, primarily due to the significantly increased surface area accessible to electrolyte ions. A GNR electrode with attached MnO2 nanoparticles was prepared by EPD method in the presence of hydrated manganese nitrate. The specific capacitance of GNR electrode with attached MnO2 could reach 266 F g−1, much higher than that of GNR electrode (88 F g−1) at a discharge current of 1 A g−1. The hydrophilic MnO2 nanoparticles attached to GNRs could act as a redox center and nanospacer to allow the storage of extra capacitance.  相似文献   

9.
《Ceramics International》2015,41(8):9662-9667
LiMgxMn2−xO4 (x≤0.10) cathode materials for lithium-ion batteries were prepared by molten-salt combustion and then structurally characterized by powder X-ray diffraction. All the cathode materials were identified as the spinel structure of LiMn2O4 and the lattice parameter decreased as the Mg content of LiMgxMn2−xO4 increased. Scanning electron microscopy revealed that the average particle size and agglomeration decreased with increasing Mg content. Galvanostatic charge–discharge experiments showed that Mg doping could effectively enhance the cycling performance of the cathode materials. LiMg0.05Mn1.95O4 demonstrated excellent electrochemical performance with an initial discharge specific capacity of 122.0 mA h g−1 and capacity retention of 86.4% after 100 cycles at 0.5 C (1 C=148 mA g−1). Rate performance, cyclic voltammetry and electrochemical impedance spectroscopy measurements showed that the Mg-doped spinels had high rate capability and reversible cycling performance.  相似文献   

10.
《Ceramics International》2017,43(8):6054-6062
In this work, we reported the synthesis of three dimensional flower-like Co3O4@MnO2 core-shell microspheres by a controllable two-step reaction. Flower-like Co3O4 microspheres cores were firstly built from the self-assembly of Co3O4 nanosheets, on which MnO2 nanosheets shells were subsequently grown through the hydrothermal decomposition of KMnO4. The MnO2 nanosheets shells were found to increase the electrochemical active sites and allow faster redox reaction kinetics. Based on these advantages, when used as an electrode for supercapacitors, the prepared flower-like Co3O4@MnO2 core-shell composite electrode demonstrated a significantly enhanced specific capacitance (671 F g−1 at 1 A g−1) as well as improved rate capability (84% retention at 10 A g−1) compared with the pristine flower-like Co3O4 electrode. Moreover, the optimized asymmetric supercapacitor device based on the flower-like Co3O4@MnO2//active carbon exhibited a high energy density of 34.1 W h kg−1 at a power density of 750 W kg−1, meaning its great potential application for energy storage devices.  相似文献   

11.
《Ceramics International》2017,43(5):4655-4662
Mn3O4/N-doped graphene (Mn3O4/NG) hybrids were synthesized by a simple one-pot hydrothermal process. The scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray powder diffraction (XRD), Thermogravimetric analysis (TG), Raman Spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the microstructure, crystallinity and compositions. It is demonstrated that Mn3O4 nanoparticles are high-dispersely anchored onto the individual graphene nanosheets, and also found that, in contrast with pure Mn3O4 obtained without graphene added, the introduction of graphene effectively restricts the growth of Mn3O4 nanoparticles. Simultaneously, the anchored well-dispersed Mn3O4 nanoparticles also play a role as spacers in preventing the restacking of graphene sheets and producing abundant nanoscale porous channels. Hence, it is well anticipated that the accessibility and reactivity of electrolyte molecules with Mn3O4/NG electrode are highly improved during the electrochemical process. As the anode material for lithium ion batteries, the Mn3O4/NG hybrid electrode displays an outstanding reversible capacity of 1208.4 mAh g−1 after 150 cycles at a current density of 88 mA g−1, even still retained 284 mAh g−1 at a high current density of 4400 mA g−1 after 10 cycles, indicating the superior capacity retention, which is better than those of bare Mn3O4, and most other Mn3O4/C hybrids in reported literatures. Finally, the superior performance can be ascribed to the uniformly distribution of ultrafine Mn3O4 nanoparticles, successful nitrogen doping of graphene and favorable structures of the composites.  相似文献   

12.
《Ceramics International》2017,43(11):8321-8328
Here we describe the production of carbon cloth coated with MnO2 nanosheets or MnOOH nanorods through a normal temperature reaction or a hydrothermal approach, respectively. Of note, the electrochemical performance of MnO2-coated carbon cloth was better (429.2 F g−1) than that of MnOOH-coated carbon cloth. When the MnO2-coated carbon cloth is introduced as the positive electrode and the Fe2O3-coated carbon cloth as the negative electrode, a flexible asymmetric supercapacitor was obtained with an energy density of 22.8 Wh kg−1 and a power density of 159.4 W kg−1. Therefore, such a hierarchical MnO2-coated carbon cloth nanocomposite is a promising high-performance electrode for flexible supercapacitors.  相似文献   

13.
《Ceramics International》2016,42(12):13442-13448
LiSixMn2−xO4 (x≤0.10) cathode materials were prepared via a simple solid-state process with tetraethylorthosilicate (TEOS) as the silicon source. The effects of Si-doping on the structure, morphology and electrochemical performance were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge-discharge tests and electrochemical impedance spectroscopy (EIS), respectively. All the Si-doped LiMn2O4 samples showed the intrinsic spinel structure. With the increasing of Si-doping concentration, the crystal lattice constant of LiSixMn2−xO4 samples increased and the particle size distribution becomes more uniform to some extent. Among these samples, the optimal Si-doped LiMn2O4 exhibited an initial discharge capacity of 134.6 mAh g−1 at 0.5 C, which was higher than that of the undoped spinel. After 100 cycles, the discharge capacity could still reach up to 114.5 mAh g−1 with capacity retention of 85.1%. Especially, at the high rate of 5.0 C, a high discharge capacity of 87.5 mAh g−1 was obtained while the undoped spinel only exhibited 33.7 mAh g−1. Such high performance indicated that doping the manganese sites with appropriate amount of silicon ions could effectively improve the specific capacity and cycling stability.  相似文献   

14.
《Ceramics International》2016,42(15):16916-16926
In recent years, multi-component integrated composite cathodes for lithium ion batteries have attracted considerable attention. In this work, novel layered-spinel integrated cathode materials of (1−x)LiNi0.5Mn0.5O2-xLiMn1.9Al0.1O4 were synthesized by a sol-gel method, and their phase structures, morphologies and electrochemical performance were investigated. The crystal structure of the (1−x)LiNi0.5Mn0.5O2-xLiMn1.9Al0.1O4 is changed from layered to spinel structure with increasing x. All the samples exhibit nanoscale grains with the minimum grain size of ~130 nm when x = 0.5. The composite electrode with x = 0.5 exhibits the optimal discharge capacity, presenting a large initial discharge capacity of 236 mAh g−1 at the current density of 20 mA g−1. Good rate capability is also obtained at the composite electrode with x = 0.5 where the electrode displays the relatively high discharge capacity of 64.9 mAh g−1 at the high rate of 5 C. The improved electrochemical performance is related to the introduction of spinel structure into layered structure and small grain size. The spinel structure can stabilize the layered structure, which leads to the improvement in the electrochemical performance of the composites; and the small grain size in the sample with x = 0.5 provides short lithium ion diffusion way and thus enhances the electrochemical performance.  相似文献   

15.
Although supercapacitors have higher power density than batteries, they are still limited by low energy density and low capacity retention. Here we report a high-performance supercapacitor electrode of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper (MnO2–rGO/CFP). MnO2–rGO nanocomposite was produced using a colloidal mixing of rGO nanosheets and 1.8 ± 0.2 nm MnO2 nanoparticles. MnO2–rGO nanocomposite was coated on CFP using a spray-coating technique. MnO2–rGO/CFP exhibited ultrahigh specific capacitance and stability. The specific capacitance of MnO2–rGO/CFP determined by a galvanostatic charge–discharge method at 0.1 A g−1 is about 393 F g−1, which is 1.6-, 2.2-, 2.5-, and 7.4-fold higher than those of MnO2–GO/CFP, MnO2/CFP, rGO/CFP, and GO/CFP, respectively. The capacity retention of MnO2–rGO/CFP is over 98.5% of the original capacitance after 2000 cycles. This electrode has comparatively 6%, 11%, 13%, and 18% higher stability than MnO2–GO/CFP, MnO2/CFP, rGO/CFP, and GO/CFP, respectively. It is believed that the ultrahigh performance of MnO2–rGO/CFP is possibly due to high conductivity of rGO, high active surface area of tiny MnO2, and high porosity between each MnO2–rGO nanosheet coated on porous CFP. An as-fabricated all-solid-state prototype MnO2–rGO/CFP supercapacitor (2 × 14 cm) can spin up a 3 V motor for about 6 min.  相似文献   

16.
《Ceramics International》2017,43(6):5095-5101
To improve the electrochemical properties of Co3O4 for supercapacitors application, a hierarchical Co3O4@ZnWO4 core/shell nanowire arrays (NWAs) material is designed and synthesized successfully via a facile two-step hydrothermal method followed by the heat treatment. Co3O4@ZnWO4 NWAs exhibits excellent electrochemical performances with areal capacitance of 4.1 F cm−2 (1020.1 F g−1) at a current density of 2 mA cm−2 and extremely good cycling stability (99.7% of the initial capacitance remained even after 3000 cycles). Compared with pure Co3O4 electrodes, the results prove that this unique hierarchical hybrid nanostructure and reasonable assembling of two electrochemical pseudocapacitor materials are more advantageous to enhance the electrochemical performance. Considering these remarkable capacitive behaviors, the hierarchical Co3O4@ZnWO4 core/shell NWAs nanostructure electrode can be revealed promising for high-performance supercapacitors.  相似文献   

17.
A by-product free strategy based on modified Hummers method was proposed to synthesize graphene/Mn3O4 composites without any additional manganese source. Coal-derived graphite (CDG) was used as carbon source instead of conventional natural graphite flakes and MnSO4 produced from the modified Hummers was in situ transformed into Mn3O4 by precipitation in air. After reduction with hydrazine, the reduced coal-derived graphene oxide/Mn3O4 (RCDGO/Mn3O4) was obtained and employed as the electrode material for the supercapacitors. In addition, K2SO4 produced from the modified Hummers was used as electrolyte, as a result, residual-free was achieved during the whole process, and the atom utilization was calculated as high as about 97%. A maximum specific capacitance of 260 F g1 was achieved for RCDGO/Mn3O4 composite with 86% Mn3O4 in saturated K2SO4 electrolyte solution based on the synergetic effects between coal-derived graphene and attached Mn3O4 nanoparticles. Its specific energy density reached 8.7 Wh kg1 at a current density of 50 mA g1 when used as a symmetrical supercapacitor. The good capacitance retention (92–94%) was also observed after 1000 continuous cycles of galvanostatic charge–discharge.  相似文献   

18.
《Ceramics International》2017,43(7):5374-5381
The MnO2 nanoflowers/reduced graphene oxide composite is coated on a nickel foam substrate (denoted as MnO2 NF/RGO @ Ni foam) via the layer by layer (LBL) self-assembly technology without any polymer additive, following the soft chemical reduction. The layered MnO2 NF/RGO composite is uniformly anchored on the Ni foam skeleton to form the 3D porous framework, and the interlayers have access to lots of ions channels to improve the electron transfer and diffusion. This special construction of 3D porous structure is beneficial to the enhancement of electrochemical property. The specific capacitance is up to 246 F g−1 under the current density of 0.5 A g−1. After 1000 cycles, it can retain about 93%, exhibiting excellent cycle stability. The electrochemical impedance spectroscopy measurements confirm that MnO2 NF/RGO @ Ni foam electrode has lower RESR and RCT values when compared to MnO2 @ Ni foam and RGO @ Ni foam. This study opens a new door to the preparation of composite electrodes for high performance supercapacitor.  相似文献   

19.
《Ceramics International》2017,43(2):2136-2142
ZnFe2O4-graphene composite nanofibers were prepared through electrospinning technique, then with graphene oxide by the facile solvothermal method to get the final products for the first time. The obtained ZnFe2O4 nanofibers composed of numerous same size nanoparticles wrapped by graphene sheets to form a unique nanostructure. When the ZnFe2O4-graphene electrode was evaluated as anode for lithium-ion batteries, good rate capability and long-term cycling stability could be achieved. The ZnFe2O4-graphene electrode exhibited a first discharge capacity of 2166 mAh g−1 cycling at 0.05 C, remained an average reversible capacity of 1000 mAh g−1 after 50 cycles, and kept the high rate capacities of 899, 822, 760 and 711 mAh g−1 at the current rates of 0.5, 1, 2 and 5 C, respectively. The excellent electrochemical performance could be ascribed to the following reasons: the large electrochemical active surface area provided by the composite nanofibers; the graphene sheets decreased the internal resistance of the lithium-ion batteries, which resulted from the electrical conductivity of the graphene sheets; the graphene sheets as conductive network could effectively restrain the agglomeration of ZnFe2O4 nanopaiticals.  相似文献   

20.
Manganese oxide (MnO2)/three-dimensional (3D) reduced graphene oxide (RGO) composites were prepared by a reverse microemulsion (water/oil) method. MnO2 nanoparticles (3–20 nm in diameter) with different morphologies were produced and dispersed homogeneously on the macropore surfaces of the 3D RGO. Scanning electron microscopy and transmission electron microscopy were applied to characterize the microstructure of the composites. The MnO2/3D RGO composites, which were annealed at 150 °C, displayed a significantly high specific capacitance of 709.8 F g−1 at 0.2 A g−1. After 1000 cycles, the capacitance retention was measured to be 97.6%, which indicates an excellent long-term stability of the MnO2/3D RGO composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号