首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
Milk production data of Luxembourg and Tunisian Holstein cows were analyzed using herd management (HM) level. Herds in each country were clustered into high, medium, and low HM levels based on solutions of herd-test-date and herd-year of calving effects from national evaluations. Data from both populations included 730,810 test-day (TD) milk yield records from 87,734 first-lactation cows. A multi-trait, random regression TD model was used to estimate (co)variance components for milk yield within and across country HM levels. Additive genetic and permanent environmental variances of TD milk yields varied with management level in Tunisia and Luxembourg. Additive variances were smaller across HM levels in Tunisia than in Luxembourg, whereas permanent environmental variances were larger in Tunisian HM levels. Highest heritability estimates of 305-d milk yield (0.41 and 0.21) were found in high HM levels, whereas lowest estimates (0.31 and 0.12, respectively) were associated with low HM levels in both countries. Genetic correlations among Luxembourg HM levels were >0.96, whereas those among Tunisian HM levels were below 0.80. Respective rank orders of sires ranged from 0.73 to 0.83 across Luxembourg environments and from 0.33 to 0.42 across Tunisian HM levels indicating high re-ranking of sires in Tunisia and only a scaling effect in Luxembourg. Across-country environment analysis showed that estimates of genetic variance in the high, medium, and low classes of Tunisian environments were 45, 69, and 81% lower, respectively, than the estimate found in the high Luxembourg HM level. Genetic correlations among 305-d milk yields in Tunisian and Luxembourg HM environments ranged from 0.39 to 0.79. The largest estimated genetic correlation was found between the medium Luxembourg and high Tunisian HM levels. Rank correlations for common sires’ estimated breeding values among HM environments were low and ranged from 0.19 to 0.39, implying the existence of genotype by environment interaction. These results indicate that daughters of superior sires in Luxembourg have their genetic expression for milk production limited under Tunisian environments. Milk production of cows in the medium and low Luxembourg environments were good predictors of that of their paternal half-sisters in the high Tunisian HM level. Breeding decisions in low-input Tunisian environment should utilize semen from sires with daughters in similar production environments rather than semen of bulls proven in higher management levels.  相似文献   

2.
The Canadian Test-Day Model includes test-day (TD) records from 5 to 305 d in milk (DIM). Because 60% of Canadian Holstein cows have at least one lactation longer than 305 d, a significant number of TD records beyond 305 DIM could be included in the genetic evaluation. The aim of this study was to investigate whether TD records beyond 305 DIM could be useful for estimation of 305-d estimated breeding value (EBV) for milk, fat, and protein yields and somatic cell score. Data were 48,638,184 TD milk, fat, and protein yields and somatic cell scores from the first 3 lactations of 2,826,456 Canadian Holstein cows. All production traits were preadjusted for the effect of pregnancy. Subsets of data were created for variance-component estimation by random sampling of 50 herds. Variance components were estimated using Gibbs sampling. Full data sets were used for estimation of breeding values. Three multiple-trait, multiple-lactation random regression models with TD records up to 305 DIM (M305), 335 DIM (M335), and 365 DIM (M365) were fitted. Two additional models (M305a and M305b) used TD records up to 305 DIM and variance components previously estimated by M335 and M365, respectively. The effects common to all models were fixed effects of herd × test-date and DIM class, fixed regression on DIM nested within region × age × season class, and random regressions for additive genetic and permanent environmental effects. Legendre polynomials of order 6 and 4 were fitted for fixed and random regressions, respectively. Rapid increase of additive genetic and permanent environmental variances at extremes of lactations was observed with all 3 models. The increase of additive genetic and permanent environmental variances was at earlier DIM with M305, resulting in greater variances at 305 DIM with M305 than with M335 and M365. Model M305 had the best ability to predict TD yields from 5 through 305 DIM and less error of prediction of 305-d EBV than M335 and M365. Model M335 had smaller change of 305-d EBV of bulls over the period of 7 yr than did M305 and M365. Model M305a had the least error of prediction and change of 305-d EBV from all models. Therefore, the use of TD records of Holstein cows from 5 through 305 DIM and variance components estimated using records up to 335 DIM is recommended for the Canadian Test-Day Model.  相似文献   

3.
This study compared genetic evaluations from 3 test-day (TD) models with different assumptions about the environmental covariance structure for TD records and genetic evaluations from 305-d lactation records for dairy cows. Estimates of genetic values of 12,071 first-lactation Holstein cows were obtained with the 3 TD models using 106,472 TD records. The compound symmetry (CS) model was a simple test-day repeatability animal model with compound symmetry covariance structure for TD environmental effects. The ARs and ARe models also used TD records but with a first-order autoregressive covariance structure among short-term environmental effects or residuals, respectively. Estimates of genetic values with the TD models were also compared with those from a model using 305-d lactation records. Animals were genetically evaluated for milk, fat, and protein yields, and somatic cell score (SCS). The largest average estimates of accuracy of predicted breeding values were obtained with the ARs model and the smallest were with the 305-d model. The 305-d model resulted in smaller estimates of correlations between average predicted breeding values of the parents and lactation records of their daughters for milk and protein yields and SCS than did the CS and ARe models. Predicted breeding values with the 3 TD models were highly correlated (0.98 to 1.00). Predicted breeding values with 305-d lactation records were moderately correlated with those with TD models (0.71 to 0.87 for sires and 0.80 to 0.87 for cows). More genetic improvement can be achieved by using TD models to select for animals for higher milk, fat, and protein yields, and lower SCS than by using models with 305-d lactation records.  相似文献   

4.
Cows with high lactation persistency tend to produce less milk than expected at the beginning of lactation and more than expected at the end. Best prediction of lactation persistency is calculated as a function of trait-specific standard lactation curves and linear regressions of test-day deviations on days in milk. Because regression coefficients are deviations from a tipping point selected to make yield and lactation persistency phenotypically uncorrelated it should be possible to use 305-d actual yield and lactation persistency to predict yield for lactations with later endpoints. The objectives of this study were to calculate (co)variance components and breeding values for best predictions of lactation persistency of milk (PM), fat (PF), protein (PP), and somatic cell score (PSCS) in breeds other than Holstein, and to demonstrate the calculation of prediction equations for 400-d actual milk yield. Data included lactations from Ayrshire, Brown Swiss, Guernsey (GU), Jersey (JE), and Milking Shorthorn (MS) cows calving since 1997. The number of sires evaluated ranged from 86 (MS) to 3,192 (JE), and mean sire estimated breeding value for PM ranged from 0.001 (Ayrshire) to 0.10 (Brown Swiss); mean estimated breeding value for PSCS ranged from −0.01 (MS) to −0.043 (JE). Heritabilities were generally highest for PM (0.09 to 0.15) and lowest for PSCS (0.03 to 0.06), with PF and PP having intermediate values (0.07 to 0.13). Repeatabilities varied considerably between breeds, ranging from 0.08 (PSCS in GU, JE, and MS) to 0.28 (PM in GU). Genetic correlations of PM, PF, and PP with PSCS were moderate and favorable (negative), indicating that increasing lactation persistency of yield traits is associated with decreases in lactation persistency of SCS, as expected. Genetic correlations among yield and lactation persistency were low to moderate and ranged from −0.55 (PP in GU) to 0.40 (PP in MS). Prediction equations for 400-d milk yield were calculated for each breed by regression of both 305-d yield and 305-d yield and lactation persistency on 400-d yield. Goodness-of-fit was very good for both models, but the addition of lactation persistency to the model significantly improved fit in all cases. Routine genetic evaluations for lactation persistency, as well as the development of prediction equations for several lactation end-points, may provide producers with tools to better manage their herds.  相似文献   

5.
A Bayesian procedure was developed for fitting Wood's incomplete Gamma function to test-day milk records of Spanish Holstein Friesian cattle. Each parameter of Wood's function was considered as a dependent variable in a submodel that accounted for systematic effects and genetic relationships among animals. Marginal posterior distributions of model parameters were obtained using Gibbs sampling. Variables of economic interest, such as 305-d yield, persistency, peak yield, and days in milk at peak day were predicted as functions of Wood's function curve parameters. Heritability estimates were 0.26, 0.32, and 0.19 for parameters of Wood's function and 0.26, 0.14, 0.26, and 0.05 for 305-d yield, persistency, peak yield, and days in milk at peak yield. These estimates indicate that it is possible to modify the shape of the lactation curve through genetic selection. Genetic correlations between parameters of Wood's curve and the aforementioned functions of these parameters suggest that selection for 305-d milk yield would result in higher and later peak yield, but only a slight improvement in persistency is expected.  相似文献   

6.
Experience with a test-day model   总被引:3,自引:0,他引:3  
The Canadian Test-Day Model is a 12-trait random regression animal model in which traits are milk, fat, and protein test-day yields, and somatic cell scores on test days within each of first three lactations. Test-day records from later lactations are not used. Random regressions (genetic and permanent environmental) were based on Wilmink's three parameter function that includes an intercept, regression on days in milk, and regression on an exponential function to the power -0.05 times days in milk. The model was applied to over 22 million test-day records of over 1.4 million cows in seven dairy breeds for cows first calving since 1988. A theoretical comparison of test-day model to 305-d complete lactation animal model is given. Each animal in an analysis receives 36 additive genetic solutions (12 traits by three regression coefficients), and these are combined to give one estimated breeding value (EBV) for each of milk, fat, and protein yields, average daily somatic cell score and milk yield persistency (for bulls only). Correlation of yield EBV with previous 305-d lactation model EBV for bulls was 0.97 and for cows was 0.93 (Holsteins). A question is whether EBV for yield traits for each lactation should be combined into one overall EBV, and if so, what method to combine them. Implementation required development of new methods for approximation of reliabilities of EBV, inclusion of cows without test day records in analysis, but which were still alive and had progeny with test-day records, adjustments for heterogeneous herd-test date variances, and international comparisons. Efforts to inform the dairy industry about changes in EBV due to the model and recovering information needed to explain changes in specific animals' EBV are significant challenges. The Canadian dairy industry will require a year or more to become comfortable with the test-day model and to realize the impact it could have on selection decisions.  相似文献   

7.
Lactation records of any reasonable length now can be processed with the selection index method known as best prediction (BP). Previous prediction programs were limited to the 305-d standard used since 1935. Best prediction was implemented in 1998 to calculate lactation records in USDA genetic evaluations, replacing the test interval method used since 1969 to calculate lactation records. Best prediction is more complex but also more accurate, particularly when testing is less frequent. Programs were reorganized to output better graphics, give users simpler access to options, and provide additional output, such as BP of daily yields. Test-day data for 6 breeds were extracted from the national dairy database, and lactation lengths were required to be ≥500 d (Ayrshire, Milking Shorthorn) or ≥800 d (all others). Average yield and SD at any day in milk (DIM) were estimated by fitting 3-parameter Wood's curves (milk, fat, protein) and 4-parameter exponential functions (somatic cell score) to means and SD of 15- (≤300 DIM) and 30-d (>300 DIM) intervals. Correlations among TD yields were estimated using an autoregressive matrix to account for biological changes and an identity matrix to model daily measurement error. Autoregressive parameters (r) were estimated separately for first (r = 0.998) and later parities (r = 0.995). These r values were slightly larger than previous estimates due to the inclusion of the identity matrix. Correlations between traits were modified so that correlations between somatic cell score and other traits may be nonzero. The new lactation curves and correlation functions were validated by extracting TD data from the national database, estimating 305-d yields using the original and new programs, and correlating those results. Daily BP of yield were validated using daily milk weights from on-farm meters in university research herds. Correlations ranged from 0.900 to 0.988 for 305-d milk yield. High correlations ranged from 0.844 to 0.988 for daily yields, although correlations were as low as 0.015 on d 1 of lactation, which may be due to calving-related disorders that are not accounted for by BP. Correlations between 305-d yield calculated using 50-d intervals from 50 to 250 DIM and 305-yield calculated using all TD to 500 DIM increased as TD data accumulated. Many cows can profitably produce for >305 DIM, and the revised program provides a flexible tool to model these records.  相似文献   

8.
The main objective of this study was to estimate genetic relationships between lactation persistency and reproductive performance in first lactation. Relationships with day in milk at peak milk yield and estimated 305-d milk yield were also investigated. The data set contained 33,312 first-lactation Canadian Holsteins with first-parity reproductive, persistency, and productive information. Reproductive performance traits included age at first insemination, nonreturn rate at 56 d after first insemination as a virgin heifer and as a first-lactation cow, calving difficulty at first calving and calving interval between first and second calving. Lactation persistency was defined as the Wilmink b parameter for milk yield and was calculated by fitting lactation curves to test day records using a multiple-trait prediction procedure. An 8-trait genetic analysis was performed using the Variance Component Estimation package (VCE 5) via Gibbs sampling to estimate genetic parameters for all traits. Heritabilities of persistency, day in milk at peak milk yield and estimated 305-d milk yield were 0.18, 0.09 and 0.45, respectively. Heritabilities of reproduction were low and ranged from 0.03 to 0.19. The highest heritability was for age at first insemination. Heifer reproductive traits were lowly genetically correlated, whereas cow reproductive traits were moderately correlated. Heifers younger than average when first inseminated and/or conceived successfully at first insemination tended to have a more persistent first lactation. First lactation was more persistent if heifers had difficulty calving (r(g) = 0.43), or conceived successfully at first insemination in first lactation (r(g) = 0.32) or had a longer interval between first and second calving (r(g) = 0.17). Estimates of genetic correlations of reproductive performance with estimated 305-d milk yield were different in magnitude, but similar in sign to those with persistency (0.02 to 0.51).  相似文献   

9.
Interaction of genotype with environment was studied with 10,780 Spanish production records (daughters of 210 Holstein-Friesian bulls) and two subsets of United States data (800,821 records with 1170 sires and 762,152 records with 1186 sires). Only 74 bulls had daughter records in both Spanish and United States data. Genetic and phenotypic (co)variances and correlations and heritability for milk and fat yields were estimated both within country and between countries with countries considered as separate traits (joint analysis). (Co)variance components were estimated with a REML procedure. Heritability estimates for milk and fat in the Spanish population (.16 and .14, within country; .12 and .09, joint) were smaller than for United States data (means of .33 and .31, within country; .26 and .24, joint). Genetic and phenotypic correlations between milk and fat within country were higher for Spain (.94 and .91) than for United States data (means of .66 and .81). Genetic correlation between countries averaged .81 for milk and .50 for fat. Rankings of bulls for milk yield are expected to be similar in Spain and the United States, although a scaling effect on predicted values is expected from different genetic variances in each country. Ranking of bulls for fat yield may be quite different.  相似文献   

10.
It is important to have improvement in both lactation milk yield and persistency. Modification of the lactation curve requires severe restrictions on selection criteria designed to simultaneously improve both milk yield and persistency. As a result, manipulating the lactation curve for improved persistency requires higher selection intensity than unrestricted selection based on 305-d estimated breeding value (EBV). Our study showed that for a given restriction imposed on both milk EBV and persistency, it is possible to derive different indexes to achieve this selection constraint with different degrees of selection intensity. Of the class of indexes that meets the same restriction, it is preferable to choose the index that requires the least selection intensity because it is easier to achieve the selection goal with the use of an index that requires a lower selection intensity than a higher selection intensity. An optimal index based on random regression (RR) coefficients was developed to achieve the prespecified stage genetic gains with the lowest selection intensity. A conversion equation was derived to convert the selection index based on RR coefficients to the selection index based on stage EBV with the lowest selection intensity. A numerical example is provided to demonstrate the procedures developed compared with conventional selection based on 305-d milk EBV.  相似文献   

11.
Genetic relationships between Brazilian and US Holstein cattle populations were studied using first-lactation records of 305-d mature equivalent (ME) yields of milk and fat of daughters of 705 sires in Brazil and 701 sires in the United States, 358 of which had progeny in both countries. Components of(co)variance and genetic parameters were estimated from all data and from within herd-year standard deviation for milk (HYSD) data files using bivariate and multivariate sire models and DFREML procedures distinguishing the two countries. Sire (residual) variances from all data for milk yield were 51 to 59% (58 to 101%) as large in Brazil as those obtained from half-sisters in the average US herd. Corresponding proportions of the US variance in fat yield that were found in Brazil were 30 to 41% for the sire component of variance and 48 to 80% for the residual. Heritabilities for milk and fat yields from multivariate analysis of all the data were 0.25 and 0.22 in Brazil, and 0.34 and 0.35 in the United States. Genetic correlations between milk and fat were 0.79 in Brazil and 0.62 in the United States. Genetic correlations between countries were 0.85 for milk, 0.88 for fat, 0.55 for milk in Brazil and fat in the US, and 0.67 for fat in Brazil and milk in the United States. Correlated responses in Brazil from sire selection based on the US information increased with average HYSD in Brazil. Largest daughter yield response was predicted from information from half-sisters in low HYSD US herds (0.75 kg/kg for milk; 0.63 kg/kg for fat), which was 14% to 17% greater than estimates from all US herds because the scaling effects were less severe from heterogeneous variances. Unequal daughter response from unequal genetic (co)variances under restrictive Brazilian conditions is evidence for the interaction of genotype and environment. The smaller and variable yield expectations of daughters of US sires in Brazilian environments suggest the need for specific genetic improvement strategies in Brazilian Holstein herds. A US data file restricting daughter information to low HYSD US environments would be a wise choice for across-country evaluation. Procedures to incorporate such foreign evaluations should be explored to improve the accuracy of genetic evaluations for the Brazilian Holstein population.  相似文献   

12.
Selecting for lactation curve and milk yield in dairy cattle   总被引:3,自引:0,他引:3  
Knowledge of genetic relationships between characteristics of lactation curves and lactation yields is essential for joint selection for both. An equation, yt = atbexp(-ct), was chosen to depict individual lactation curves for 5,927 first lactations by Holsteins in 557 herds in Michigan Dairy Herd Improvement where yt is daily milk yield at day t in lactation, a is yield at time zero, b is ascent to peak, and c is decline after peak. Genetic correlations for 305-day milk yield with initial production (a), ascent to peak (b), descent after peak (c), and peak yield were -.37, .40, 0, and .91. From empirical results from applied selection indexes, selecting for both increase of ascent to peak and peak yield did not decrease 305-day milk substantially. Rankings of sires on these indexes were similar to their rankings on milk yield alone. Attempts to decrease peak yield and increase persistency decreased milk yield greatly.  相似文献   

13.
Genetic parameters for milk, fat, and protein yield and persistency in the first 3 lactations of Polish Black and White cattle were estimated. A multiple-lactation model was applied with random herd-test-day effect, fixed regressions for herd-year and age-season of calving, and random regressions for the additive genetic and permanent environmental effects. Three data sets with slightly different edits on minimal number of days in milk and the size of herd-year class were used. Each subset included more than 0.5 million test-day records and more than 58,000 cows. Estimates of covariance components and genetic parameters for each trait were obtained by Bayesian methods using the Gibbs sampler. Due to the large size and a good structure of the data, no differences in estimates were found when additional criteria for record selection were applied. More than 95% of the genetic variance for all traits and lactations was explained by the first 2 principal components, which were associated with the mean yield and lactation persistency. Heritabilities of 305-d milk yield in the first 3 lactations (0.18, 0.16, 0.17) were lower than those for fat (0.12, 0.11, 0.12) and protein (0.13, 0.14, 0.15). Estimates of daily heritabilities increased in general with days in milk for all traits and lactations, with no apparent abnormalities at the beginning or end of lactation. Genetic correlations between yields in different lactations ranged from 0.74 (fat yield in lactations 1 and 3) to 0.89 (milk yield in lactations 2 and 3). Persistency of lactation was defined as the linear regression coefficient of the lactation curve. Heritability of persistency increased with lactation number for all traits and genetic correlations between persistency in different lactations were smaller than those for 305d yield. Persistency was not genetically correlated with the total yield in lactation.  相似文献   

14.
Cows with high persistency tend to produce less milk than expected at the beginning of lactation and more than expected at the end. Best prediction of persistency was calculated as a function of a trait-specific standard lactation curve and a linear regression of test-day deviations on days in milk. Regression coefficients were deviations from a balance point to make yield and persistency phenotypically uncorrelated. The objectives of this study were to calculate (co)variance components and breeding values for best predictions of persistency of milk (PM), fat (PF), protein (PP), and SCS (PSCS) in Holstein cows. Data included 8,682,138 lactations from 4,375,938 cows calving since 1997, and 39,354 sires were evaluated. Sire estimated breeding values (EBV) for PM, PF, and PP were similar and ranged from −0.70 to 0.75 for PM; EBV for PSCS ranged from −0.37 to 0.28. Regressions of sire EBV on birth year were near zero (<0.003) but positive for PM, PF, and PP, and negative for PSCS. Genetic correlations of PM, PF, and PP with PSCS were moderate and favorable, indicating that increasing SCS decreases yield traits, as expected. Genetic correlations among yield and persistency were low to moderate and ranged from −0.09 (PSCS) to 0.18 (PF). This definition of persistency may be more useful than those used in test-day models, which are often correlated with yield. Routine genetic evaluations for persistency are feasible and may allow for improved predictions of yield traits. As calving intervals increase, persistency may have greater value.  相似文献   

15.
Estimates of additive and nonadditive multibreed co-variance components, genetic parameters, and predicted genetic values for first lactation 305-d mature equivalent (ME) milk yield, fat yield, and protein yield were computed using data from a sample of 3316 cows from the Chilean Holstein-other breeds multibreed population. Variances and covariances were estimated by 2-trait REML analyses using a Generalized Expectation-Maximization algorithm applied to multibreed populations. Multiple estimates of additive genetic, nonadditive genetic, and environmental variances from 2-trait analyses were averaged to yield a single variance estimate for each trait and effect. Heritabilities were moderate for all traits in Holstein, other, and Holstein x other crossbred groups. Interbreed interactibilities (ratio of nonadditive genetic to phenotypic variances) were all near zero. Multibreed additive, nonadditive, and total genetic trends were estimated using the complete dataset (56,277 cows). Upward trends between 1990 and 2000 existed for all traits, genetic effects, and breed groups, except for 305-d ME protein yield in 1/4 Holstein, indicating that Chilean dairy producers were successful in choosing progressively better semen and sires from imported and local sources over time.  相似文献   

16.
Multiple-trait random regression animal models with simultaneous and recursive links between phenotypes for milk yield and somatic cell score (SCS) on the same test day were fitted to Canadian Holstein data. All models included fixed herd test-day effects and fixed regressions within region-age at calving-season of calving classes, and animal additive genetic and permanent environmental regressions with random coefficients. Regressions were Legendre polynomials of order 4 on a scale from 5 to 305 d in milk (DIM). Bayesian methods via Gibbs sampling were used for the estimation of model parameters. Heterogeneity of structural coefficients was modeled across (the first 3 lactations) and within (4 DIM intervals) lactation. Model comparisons in terms of Bayes factors indicated the superiority of simultaneous models over the standard multiple-trait model and recursive parameterizations. A moderate heterogeneous (both across- and within-lactation) negative effect of SCS on milk yield (from −0.36 for 116 to 265 DIM in lactation 1 to −0.81 for 5 to 45 DIM in lactation 3) and a smaller positive reciprocal effect of SCS on milk yield (from 0.007 for 5 to 45 DIM in lactation 2 to 0.023 for 46 to 115 DIM in lactation 3) were estimated in the most plausible specification. No noticeable differences among models were detected for genetic and environmental variances and genetic parameters for the first 2 regression coefficients. The curves of genetic and permanent environmental variances, heritabilities, and genetic and phenotypic correlations between milk yield and SCS on a daily basis were different for different models. Rankings of bulls and cows for 305-d milk yield, average daily SCS, and milk lactation persistency remained the same among models. No apparent benefits are expected from fitting causal phenotypic relationships between milk yield and SCS on the same test day in the random regression test-day model for genetic evaluation purposes.  相似文献   

17.
(Co)variance components for milk, fat, and protein yield of 8075 first-parity Danish Holsteins (DH) were estimated in random regression models by REML. For all analyses, the fixed part of the model was held constant, whereas four different functions were applied to model the additive genetic effect and the permanent environment effect. Homogeneous residual variance was assumed throughout lactation. Univariate models were compared using a minimum of -2 ln(restricted likelihood) as the criterion for best fit. Heritabilities as a function of time were calculated from the estimated curve parameters from univariate analyses. Independent of the function applied and the trait in question, heritabilities were lowest in the beginning of the lactation. Heritabilities for persistency of fat yield were slightly higher than heritabilities for persistency of milk and protein yield. Genetic correlations between persistency and 305-d production were higher for protein and milk yield than for fat yield. Bivariate analyses between the production traits were carried out in sire models using the models with the best 3-parameter curve fit in the univariate analyses. Correlations between traits were calculated from covariance components for curve parameters estimated in bivariate analyses. Genetic correlations between milk and protein yield were higher than between milk and fat yield.  相似文献   

18.
First-lactation milk yield test-day records on cows from Australia, Canada, Italy, and New Zealand were analyzed by single- and multiple-country random regression models. Models included fixed effects of herd-test day and breed composition-age at calving-season of calving by days in milk, and random regressions with Legendre polynomials of order four for animal genetic and permanent environmental effects. Milk yields in different countries were defined as genetically different traits for the purpose of multiple-trait model. Estimated breeding values of bulls and cows from single- and multiple-trait models were compared within and across countries for two traits: total milk yield in lactation and lactation persistency, defined as the linear coefficient of animal genetic curve. Correlations between single- and multiple-trait evaluations within country for total yield were higher than 0.95 for bulls and close to 1 for cows. Correlations for lactation persistency were lower than respective correlations for total yield. Between country correlations for lactation yield ranged from 0.93 to 0.96, indicating different ranking of bulls on different country scales under multiple-trait model. Lactation persistency had in general lower between-country correlations, with the highest values for Canada-Italy and Australia-New Zealand pairs, for both single- and multiple-country models. Although multiple-country random regression test-day model was computationally feasible for four countries, the same would not be true for routine international genetic evaluation in the near future.  相似文献   

19.
Several research reports have indicated increasing dairy cow mortality in recent years. The objectives of this research were to characterize the phenotypic differences in mortality in the first 3 parities across 3 regions of the United States to estimate the heritability of mortality of Holstein cows across regions and parities, and to estimate genetic and environmental correlations between milk yield and mortality across parities and regions. Dairy Herd Information (DHI) milk yield and mortality data were obtained from 3 different US regions: the Southeast (SE), Southwest (SW), and Northeast (NE). A total of 3,522,824 records for the first 3 parities were used: 732,009 (SE), 656,768 (SW), and 2,134,047 (NE) from 1999 to 2008. Cows that received a termination code of 6—“Cow died on the dairy; downer cows that were euthanized should be included here”—were given a mortality score of 2 (dead), whereas all other codes were assigned a mortality score of 1 (alive). Average annual mortalities in the first 3 parities across regions ranged from 2.2 to 7.2%, with mortality frequency increasing with increasing parity across all regions and with the SE having the highest mortality frequency. For genetic analysis, a 2-trait (305-d milk yield and mortality) linear-threshold animal model that fitted fixed effects of herd-year (for 305-d milk yield), cow age, days in milk (in month classes), month-of-termination, and random effects of herd-year (for mortality), animal, and residual was implemented. The model was used to estimate variance components separately for each region and parity. Heritability estimates for mortality were similar for all regions and parities, ranging from 0.04 to 0.07. Genetic correlations between mortality and 305-d milk yield across the first 3 parities were 0.14, 0.20, and 0.29 in SE; −0.01, 0.01, and 0.31 in SW; and 0.28, 0.33, and 0.19 in NE. We detected an adverse genetic relationship between milk production and mortality; however, the moderate magnitudes of the genetic correlations suggest that indices that include both milk yield and mortality could be effective in identifying sires that would provide opportunities for minimizing death loss even when selecting for increased milk yield.  相似文献   

20.
The objective of this study was to investigate the feasibility of genomic evaluation for cow mortality and milk production using a single-step methodology. Genomic relationships between cow mortality and milk production were also analyzed. Data included 883,887 (866,700) first-parity, 733,904 (711,211) second-parity, and 516,256 (492,026) third-parity records on cow mortality (305-d milk yields) of Holsteins from Northeast states in the United States. The pedigree consisted of up to 1,690,481 animals including 34,481 bulls genotyped with 36,951 SNP markers. Analyses were conducted with a bivariate threshold-linear model for each parity separately. Genomic information was incorporated as a genomic relationship matrix in the single-step BLUP. Traditional and genomic estimated breeding values (GEBV) were obtained with Gibbs sampling using fixed variances, whereas reliabilities were calculated from variances of GEBV samples. Genomic EBV were then converted into single nucleotide polymorphism (SNP) marker effects. Those SNP effects were categorized according to values corresponding to 1 to 4 standard deviations. Moving averages and variances of SNP effects were calculated for windows of 30 adjacent SNP, and Manhattan plots were created for SNP variances with the same window size. Using Gibbs sampling, the reliability for genotyped bulls for cow mortality was 28 to 30% in EBV and 70 to 72% in GEBV. The reliability for genotyped bulls for 305-d milk yields was 53 to 65% to 81 to 85% in GEBV. Correlations of SNP effects between mortality and 305-d milk yields within categories were the highest with the largest SNP effects and reached >0.7 at 4 standard deviations. All SNP regions explained less than 0.6% of the genetic variance for both traits, except regions close to the DGAT1 gene, which explained up to 2.5% for cow mortality and 4% for 305-d milk yields. Reliability for GEBV with a moderate number of genotyped animals can be calculated by Gibbs samples. Genomic information can greatly increase the reliability of predictions not only for milk but also for mortality. The existence of a common region on Bos taurus autosome 14 affecting both traits may indicate a major gene with a pleiotropic effect on milk and mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号