首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stochastic response surface method (SRSM) which has been previously proposed for problems dealing only with random variables is extended in this paper for problems in which physical properties exhibit spatial random variation and may be modeled as random fields. The formalism of the extended SRSM is similar to the spectral stochastic finite element method (SSFEM) in the sense that both of them utilize Karhunen–Loeve (K–L) expansion to represent the input, and polynomial chaos expansion to represent the output. However, the coefficients in the polynomial chaos expansion are calculated using a probabilistic collocation approach in SRSM. This strategy helps us to decouple the finite element and stochastic computations, and the finite element code can be treated as a black box, as in the case of a commercial code. The collocation-based SRSM approach is compared in this paper with an existing analytical SSFEM approach, which uses a Galerkin-based weighted residual formulation, and with a black-box SSFEM approach, which uses Latin Hypercube sampling for the design of experiments. Numerical examples are used to illustrate the features of the extended SRSM and to compare its efficiency and accuracy with the existing analytical and black-box versions of SSFEM.  相似文献   

2.
The inverse first-order reliability method (FORM) is considered to be one of the most widely used methods in inverse reliability analysis. It has been recognized that there are shortcomings of the inverse FORM in solving inverse reliability problems with implicit response functions, primarily inefficiency and difficulties involved in evaluating derivatives of the implicit response functions with respect to random variables. In order to apply the inverse FORM to structural inverse reliability analysis, response surface methods can be used to overcome the shortcomings. In the present paper, two different response surface methods, namely the polynomial-based response surface method and the artificial neural network-based response surface method, are developed to solve the inverse reliability problems with implicit response functions, and the accuracy and efficiency of the two response surface methods are demonstrated through two numerical examples of steel structures. It is found that the polynomial-based response surface method is more efficient and accurate than the artificial neural network-based response surface method. Recommendations are made regarding the suitability of the two response surface methods to solve the inverse reliability problems with implicit response functions.  相似文献   

3.
一座现有拱桥面内失稳的可靠度随机有限元分析   总被引:3,自引:1,他引:2  
林道锦  秦权 《工程力学》2005,22(6):122-126
用基于一次可靠度方法的可靠度随机有限元对一座现有的钢筋混凝土拱桥面内稳定性进行剩余可靠度计算,并对影响稳定性可靠度的主要参数进行了灵敏度分析。以随机变量和随机场表示现状荷载(汽车荷载、人群荷载、桥面二期恒载和结构自重)及结构参数(主拱圈弹性模量)。用作者提出的基于线性回归的随机场离散方法离散上述随机场,以有限元稳定分析的解作为复杂结构的隐式功能函数。上述功能以及失稳特征值对基本变量的梯度计算均已包含在作者开发的可靠度随机有限元程序RESFEP中。分析给出此桥稳定性可靠度值。灵敏度分析表明:在各随机变量中,拱肋弹性模量随机场离散变量对拱桥可靠度指标影响最大,汽车荷载随机场离散变量次之;在各随机变量的均值和标准差中,拱肋弹性模量随机场离散变量均值和标准差对拱桥可靠度影响最大,汽车荷载随机场离散变量的均值和标准差次之。  相似文献   

4.
将多级力控制Pushover分析方法与一次可靠度方法(First Order Reliability Method, FORM)相结合,提出了结构整体概率抗震能力分析的FORM 有限元可靠度方法。利用OpenSees 的有限元可靠度分析模块,将该方法应用于钢筋混凝土框架结构,并与蒙特卡洛模拟法分析结果进行对比。结果表明:该方法具有较高的精度和效率,为结构整体概率抗震能力分析提供了另外一种思路。  相似文献   

5.
Reliability analysis of structures using neural network method   总被引:13,自引:1,他引:13  
In order to predict the failure probability of a complicated structure, the structural responses usually need to be estimated by a numerical procedure, such as finite element method. To reduce the computational effort required for reliability analysis, response surface method could be used. However the conventional response surface method is still time consuming especially when the number of random variables is large. In this paper, an artificial neural network (ANN)-based response surface method is proposed. In this method, the relation between the random variables (input) and structural responses is established using ANN models. ANN model is then connected to a reliability method, such as first order and second moment (FORM), or Monte Carlo simulation method (MCS), to predict the failure probability. The proposed method is applied to four examples to validate its accuracy and efficiency. The obtained results show that the ANN-based response surface method is more efficient and accurate than the conventional response surface method.  相似文献   

6.
Spectral stochastic finite element method (SSFEM), used in mechanics to take into account random aspects of input data, has been implemented, as an extended version, in the 3-D finite element method (FEM) software CARMEL dedicated to electromagnetic field computation. As a test case, this approach has been applied to a 3-D electrostatic problem and successfully validated by comparing with the Monte Carlo simulation method involving usual "deterministic" CARMEL resolutions  相似文献   

7.
Probabilistic uncertainty analysis quantifies the effect of input random variables on model outputs. It is an integral part of reliability-based design, robust design, and design for Six Sigma. The efficiency and accuracy of probabilistic uncertainty analysis is a trade-off issue in engineering applications. In this paper, an efficient and accurate mean-value first order Saddlepoint Approximation (MVFOSA) method is proposed. Similar to the mean-value first order Second Moment (MVFOSM) approach, a performance function is approximated with the first order Taylor expansion at the mean values of random input variables. Instead of simply using the first two moments of the random variables as in MVFOSM, MVFOSA estimates the probability density function and cumulative distribution function of the response by the accurate Saddlepoint Approximation. Because of the use of complete distribution information, MVFOSA is generally more accurate than MVFOSM with the same computational effort. Without the nonlinear transformation from non-normal variables to normal variables as required by the first order reliability method (FORM), MVFOSA is also more accurate than FORM in certain circumstances, especially when the transformation significantly increases the nonlinearity of a performance function. It is also more efficient than FORM because an iterative search process for the so-called Most Probable Point is not required. The features of the proposed method are demonstrated with four numerical examples.  相似文献   

8.
An essential step in FORM, SORM and importance sampling reliability methods is the determination of the so-called design point. This point is the solution of a constrained optimization problem in the outcome space of the random variables, which is commonly solved by an iterative, gradient-based search algorithm. In solving this problem in the context of non-linear finite element reliability analysis, two serious impediments are encountered: (a) for certain material models, the constraint function may have a discontinuous gradient, leading to failure of the search algorithm to converge. (b) The search algorithm may generate trial points too far in the failure domain, where the finite element code fails to produce a result due to lack of numerical convergence. In this paper, remedying strategies are developed for both impediments. The first impediment is addressed by using smooth or smoothed material models, including a smoothed bi-linear model, a Bouc–Wen model and a generalized plasticity model. This is complemented by a proof that sudden elastic unloading does not give rise to gradient discontinuities. The second impediment is addressed by modifying or introducing search algorithms that prevent the trial points from overshooting into the failure domain. Numerical examples are used to demonstrate the two impediments and effectiveness of the proposed remedies.  相似文献   

9.
宋拓  汤卓  王兆勇  吕令毅 《工程力学》2014,31(11):146-153
在核电厂厂址处龙卷风观测记录的基础上,推导了极值III型龙卷风强度概率分布函数。建立了核电常规岛主厂房的计算模型,采用谱随机有限元法,考虑三种荷载工况下龙卷风荷载和结构抗力参数的不确定性,对结构进行龙卷风作用下的随机响应和可靠度分析。分析结果表明:厂房位于龙卷风中心时,龙卷风荷载对厂房的产生明显的扭转效应,结构顶点随机位移对规范限值的超越概率较大;当厂房位于龙卷风最大半径处,龙卷风对结构主要产生侧向推动作用,顶点随机位移对规范限值的超越概率很小。龙卷风位于厂房中心处为三种工况下的荷载最不利位置。  相似文献   

10.
Reliability sensitivity analysis with random and interval variables   总被引:1,自引:0,他引:1  
In reliability analysis and reliability‐based design, sensitivity analysis identifies the relationship between the change in reliability and the change in the characteristics of uncertain variables. Sensitivity analysis is also used to identify the most significant uncertain variables that have the highest contributions to reliability. Most of the current sensitivity analysis methods are applicable for only random variables. In many engineering applications, however, some of uncertain variables are intervals. In this work, a sensitivity analysis method is proposed for the mixture of random and interval variables. Six sensitivity indices are defined for the sensitivity of the average reliability and reliability bounds with respect to the averages and widths of intervals, as well as with respect to the distribution parameters of random variables. The equations of these sensitivity indices are derived based on the first‐order reliability method (FORM). The proposed reliability sensitivity analysis is a byproduct of FORM without any extra function calls after reliability is found. Once FORM is performed, the sensitivity information is obtained automatically. Two examples are used for demonstration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, a post optimization technique for a correction of inaccurate optimum obtained using first‐order reliability method (FORM) is proposed for accurate reliability‐based design optimization (RBDO). In the proposed method, RBDO using FORM is first performed, and then the proposed second‐order reliability method (SORM) is performed at the optimum obtained using FORM for more accurate reliability assessment and its sensitivity analysis. In the proposed SORM, the Hessian of a performance function is approximated by reusing derivatives information accumulated during previous RBDO iterations using FORM, indicating that additional functional evaluations are not required in the proposed SORM. The proposed SORM calculates a probability of failure and its first‐order and second‐order stochastic sensitivity by applying the importance sampling to a complete second‐order Taylor series of the performance function. The proposed post optimization constructs a second‐order Taylor expansion of the probability of failure using results of the proposed SORM. Because the constructed Taylor expansion is based on the reliability method more accurate than FORM, the corrected optimum using this Taylor expansion can satisfy the target reliability more accurately. In this way, the proposed method simultaneously achieves both efficiency of FORM and accuracy of SORM. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
基于Tsai-Wu失效准则和一次二阶矩法,建立了复合材料定向管强度可靠性分析的方法。应用Python语言实现了ABAQUS 的二次开发,编程将有限元计算程序与可靠性分析方法相结合,并采用多岛遗传算法和序列二次规划算法相结合优化策略,建立了基于可靠性的定向管铺层参数动态优化模型。优化算例表明:在满足强度可靠度条件下,复合材料定向管重量减小了22.5%。  相似文献   

13.
In the present study, the experimental and finite element (FE) analyses are first carried out to investigate the deboning behavior of metal‐composite adhesive joints under modes of I and mode II loading. To conduct an FE on the debonding propagation, cohesive zone method (CZM), as well as maximum nominal stress and energy criteria, is applied. In the reliability analysis, to achieve the probability of debonding growth (PODG), limit state functions are formulated based on the energy release rate. To that end, the first‐order reliability method (FORM), the second‐order reliability method (SORM), and the Monte Carlo simulation (MCS) are used to calculate the PODG. The effect of initial debonding length on the PODG in all mentioned modes is investigated. Results obtained from reliability analysis reveal that the random variables including the initial debonding length, width, and thickness are the most sensitive variables to ascertain the PODG.  相似文献   

14.
The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals are considered to be Gaussian. Conventional FORM analysis yields the linearization point of the idealized limit-state surface. A model correction factor is then introduced to push the idealized limit-state surface onto the actual limit-state surface. A few iterations yield a good approximation of the reliability index for the original problem. This method has application to many civil engineering problems that involve random fields of material properties or loads. An application to reliability analysis of foundation piles illustrates the proposed method.  相似文献   

15.
The increasing interest of the research community to the probabilistic analysis concerning the civil structures with space-variant properties points out the problem of achieving a reliable discretization of random processes (or random fields in a multi-dimensional domain). Given a discretization method, a continuous random process is approximated by a finite set of random variables. Its dimension affects significantly the accuracy of the approximation, in terms of the relevant properties of the continuous random process under investigation. The paper presents a discretization procedure based on the truncated Karhunen–Loève series expansion and the finite element method. The objective is to link in a rational way the number of random variables involved in the approximation to a quantitative measure of the discretization accuracy. The finite element method is applied to evaluate the terms of the series expansion when a closed form expression is not available. An iterative refinement of the finite element mesh is proposed in this paper, leading to an accurate random process discretization. The technique is tested with respect to the exponential covariance function, that enables a comparison with analytical expressions of the approximated properties of the random process. Then, the procedure is applied to the square exponential covariance functions, which is one of the most used covariance models in the structural engineering field. The comparison of the adaptive refinement of the discretization with a non-adaptive procedure and with the wavelet Galerkin approach allows to demonstrate the computational efficiency of the proposal within the framework of the Karhunen–Loève series expansion. A comparison with the Expansion Optimal Linear Estimation (EOLE) method is performed in terms of efficiency of the discretization strategy.  相似文献   

16.
A nonlinear, large deflection, elasto-plastic finite element code (EPSA) has been developed for the analysis of shells in an acoustic medium subjected to dynamic loadings. The nonlinear equations of shells are discretized with the aid of a finite difference/finite element method based upon the principle of virtual work. The resulting system of equations contains the nodal displacements as the generalized co-ordinates of the problem. The integration in time of the equations of motion is done explicitly via a central difference scheme. Shell strain-displacement relations are established by a two-dimensional finite difference scheme. The shell constitutive equations are formulated in terms of the shell stress resultants and the shell strains and curvatures. The fluid-structure interaction is accounted for by means of the doubly asymptotic approximation (DAA) expressed in terms of orthogonal fluid expansion functions. The analytically produced results satisfactorily reproduce available experimental data for dynamically loaded shells.  相似文献   

17.
This paper presents a study on the effect of blow-holes on the reliability of a cast component. The most probable point (MPP) based univariate response surface approximation is used for evaluating reliability. Crack geometry, blow-hole dimensions, external loads and material properties are treated as independent random variables. The methodology involves novel function decomposition at a most probable point that facilitates the MPP-based univariate response surface approximation of the original multivariate implicit limit state/performance function in the rotated Gaussian space. Once the approximate form of the original implicit limit state/performance function is defined, the failure probability can be obtained by Monte Carlo simulation (MCS), importance sampling technique, and first- and second-order reliability methods (FORM/SORM). FORTRAN code is developed to automate calls to ABAQUS for numerically simulating responses at sample points, to construct univariate response surface approximation, and to subsequently evaluate the failure probability by MCS, importance sampling technique, and FORM/SORM.  相似文献   

18.
An enrichment scheme based upon the Neumann expansion method is proposed to augment the deterministic coefficient vectors associated with the polynomial chaos expansion method. The proposed approach relies upon a split of the random variables into two statistically independent sets. The principal variability of the system is captured by propagating a limited number of random variables through a low-ordered polynomial chaos expansion method. The remaining random variables are propagated by a Neumann expansion method. In turn, the random variables associated with the Neumann expansion method are utilised to enrich the polynomial chaos approach. The effect of this enrichment is explicitly captured in a new augmented definition of the coefficients of the polynomial chaos expansion. This approach allows one to consider a larger number of random variables within the scope of spectral stochastic finite element analysis in a computationally efficient manner. Closed-form expressions for the first two response moments are provided. The proposed enrichment method is used to analyse two numerical examples: the bending of a cantilever beam and the flow through porous media. Both systems contain distributed stochastic properties. The results are compared with those obtained using direct Monte Carlo simulations and using the classical polynomial chaos expansion approach.  相似文献   

19.
The aim of this work is to predict the failure probability of a locking system. This failure probability is assessed using complementary methods: the First-Order Reliability Method (FORM) and Second-Order Reliability Method (SORM) as approximated methods, and Monte Carlo simulations as the reference method. Both types are implemented in a specific software [Phimeca software. Software for reliability analysis developed by Phimeca Engineering S.A.] used in this study. For the Monte Carlo simulations, a response surface, based on experimental design and finite element calculations [Abaqus/Standard User’s Manuel vol. I.], is elaborated so that the relation between the random input variables and structural responses could be established. Investigations of previous reliable methods on two configurations of the locking system show the large sturdiness of the first one and enable design improvements for the second one.  相似文献   

20.
This paper explores a method to reduce the computational cost of stochastic finite element codes. The method, known as Gaussian process emulation, consists of building a statistical approximation to the output of such codes based on few training runs. The incorporation of emulation is explored for two aspects of the stochastic finite element problem. First, it is applied to approximating realizations of random fields discretized via the Karhunen–Loève expansion. Numerical results of emulating realizations of Gaussian and lognormal homogeneous two‐dimensional random fields are presented. Second, it is coupled with the polynomial chaos expansion and the partitioned Cholesky decomposition in order to compute the response of the typical sparse linear system that arises due to the discretization of the partial differential equations that govern the response of a stochastic finite element problem. The advantages and challenges of adopting the proposed coupling are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号