首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two newly synthesised Sr0.50SbFe(PO4)3 [Sr0.5.] and SrSb0.50Fe1.50(PO4)3 [Sr.] phases were obtained by conventional solid-state reaction techniques at 1000 °C in air atmosphere. Their crystallographic structures were determined at room temperature from X-ray powder diffraction (XRPD) data using the Rietveld analysis. Both compounds belong to the Nasicon structural family. [Sr0.5.] and [Sr.] crystallise in rhombohedral system with \textR[`3] {\text{R}}\overline{3} and \textR[`3] \textc {\text{R}}\overline{3} {\text{c}} space group, respectively. Hexagonal cell parameters for [Sr0.5.] and [Sr.] are: a = 8.227(1) ?, c = 22.767(2) ? and a = 8.339(1) ?, c = 22.704(2) ?, respectively. Sr2+ and vacancies in {[Sr0.50]3a[□0.50]3b}M1SbFe(PO4)3 are practically ordered within the two positions, 3a and 3b, of M1 sites. Structure refinements show also an ordered distribution of Sb5+ and Fe3+ ions within the Nasicon framework. Within the structure, each Sr(3a)O6 octahedron shares two faces with two Fe3+O6 octahedra and each vacancy (□(3b)O6) site is located between two Sb5+O6 octahedra. In [Sr]M1Sb0.50Fe1.50(PO4)3 compound, all M1 sites are occupied by Sr2+ and the Sb5+ and Fe3+ ions are randomly distributed within the Nasicon framework. A Raman and infrared spectroscopic study was used to obtain further structural information about the nature of bonding in both selected compositions.  相似文献   

2.
Single crystals of strontium oxalate have been grown by using strontium chloride and oxalic acid in agar–agar gel media at ambient temperature. Different methods for growing crystals were adopted. The optimum conditions were employed in each method by varying concentration of gel and reactants, and gel setting time etc. Transparent prismatic bi-pyramidal platy-shaped and spherulite crystals were obtained in various methods. The grown crystals were characterized with the help of FT–IR studies and monoclinic system of crystals were supported with lattice parameters a = 9·67628 ?, b = 6·7175 ?, c = 8·6812 ?, b\boldsymbol{\beta} = 113·566°^{\boldsymbol\circ}, and V = 521·84 ?3 calculated from X-ray diffractogram.  相似文献   

3.
4.
X-ray diffraction and FTIR spectroscopy measurements have been employed to investigate the xGd2O3 · (100 − x)[2Bi2O3 · B2O3] glass ceramics system, with 0  ≤ x ≤ 20 mol%. Heat treatment of glass samples at 625 °C for 24 h led to the formation of two crystalline phases. One crystalline phase is for the sample without gadolinium ions which belongs to the cubic system and another one is for the sample containing 20 mol% Gd2O3 which is orthorhombic with two unit cell parameters very close to each other. Between x = 0 mol% and x = 20 mol% there is a mixture of these crystalline phases. FTIR spectroscopy data suggest that the gadolinium ions play the network modifier role in the studied glasses. These data show that the glass structure consists of the BiO3, BiO6, BO3, and BO4 structural units, and the conversion among these units mainly depends on the Gd2O3 content.  相似文献   

5.
Lead-free (1−x) K0.5Na0.5NbO3–xBi0.5Li0.5TiO3 + 1 mol% MnO2 piezoelectric ceramics have been prepared by a conventional ceramic technique and their structure and piezoelectric properties have been studied. Our results reveal that Bi0.5Li0.5TiO3 diffuse into K0.5Na0.5NbO3 lattices to form a solid solution with a perovskite structure. The addition of Bi0.5Li0.5TiO3 to the K0.5Na0.5NbO3 solid solution decreases the paraelectric cubic-ferroelectric tetragonal phase transition temperature (T C) slightly, but shifts the ferroelectric tetragonal-ferroelectric orthorhombic phase transition temperature (T O−T) significantly to low temperatures. As a result, coexistence of the orthorhombic and tetragonal phases is formed at 0.01 < x < 0.03 near room temperature, leading to a significant improvement in the piezoelectric properties of the ceramics. The ceramic with x = 0.025 exhibits a relatively high T C (392 °C) and optimum piezoelectric properties: d 33 = 191 pC/N, k p = 51.5% and k t = 45.5%. The ceramic also exhibit a good thermal stability of piezoelectric properties.  相似文献   

6.
New lead-free ceramics (Bi0.5Na0.5)1−x−yBax(Yb0.5Na0.5)yTiO3 (x = 0.02–0.10 and y = 0–0.04) have been prepared by an ordinary sintering technique and their structure and piezoelectric properties have been studied. X-ray diffraction shows that Ba2+ and Yb3+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a pure perovskite structure and a morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases is formed at 0.04 < x < 0.10. The partial substitutions of Ba2+ and Yb3+ for A-site ions of Bi0.5Na0.5TiO3 decrease effectively the coercive field E c and improve significantly the remanent polarization P r. The ceramics with x = 0.06 and y = 0–0.02 situate within the MPB and possess the lower E c and larger P r, and thus exhibit optimum piezoelectric properties: d 33 = 155–171 pC/N and k p = 29.2–36.7%. The temperature dependences of the dielectric and ferroelectric properties suggest that the ceramics may contain both the polar and non-polar regions at temperatures near/above T d.  相似文献   

7.
The effects of Mn substitution on the physical properties and structural characteristics of Bi1.6Pb0.4Sr2Ca2Cu3−x Mn x Oy (Bi-2223) superconductor system have been studied. For this, the samples of nominal composition Bi1.6Pb0.4Sr2Ca2Cu3−x Mn x Oy (x=0.00, 0.10, 0.15 & 0.20) was prepared by the solid-state reaction method. It has been found that the effects of Mn substitution favor the formation of Bi-2223 phases. The phase identification/gross structural characteristics of synthesized (HTSC) materials explored through powder X-ray diffractometer reveals that all the samples crystallize in orthorhombic structure with lattice parameters (a=5.4918 ?, b=5.4071 ?, and c=37.0608 ?) up to Mn concentration of x=0.20. The critical transition temperature (T c) measured by standard four probe method has been found to depress from 108 K to 70 K and transport current density (J c) has been increased from 4.67×102 to 3.52×103 A cm−2 as Mn content (x) increases from 0.00 to 0.20. The surface morphology investigated through scanning electron microscope and atomic force microscopy (SEM and AFM) results that voids and grains size increases as the Mn concentration increases besides the nanosphere like structures on the surface of the Mn doped Bi-2223 sample.  相似文献   

8.
Perovskite lead-free piezoelectric ceramics Bi0.5Na0.5TiO3, modified with yttrium and manganese to form a new compound, (1 − x) Bi0.5Na0.5TiO3xYMnO3 (BNT-YM100x) with x = 0–1.2 mol%, was synthesized by a conventional solid-state reaction method. The effect of YMnO3 on crystal structure, dielectric and piezoelectric properties was investigated. X-ray diffraction analysis shows that the materials have a single phase perovskite structure with rhombohedral symmetry. Addition of small amount of YMnO3 improves piezoelectric properties and the optimal piezoelectric properties of d 33 = 115 pC/N, k p = 0.207 and Q m = 260 were obtained at 0.9% YMnO3 addition. The loss tangent tanδ is approximately constant while Curie temperature decreases with increasing YMnO3 concentration.  相似文献   

9.
The density and volume fraction of an adsorbed phase of carbon dioxide (CO2) in aerogels was investigated using a formalism based on independent measurements of neutron transmission and small-angle neutron scattering from fluid-saturated absorbers (Rother et al. J. Phys. Chem. C 111, 15736 (2007)). The range of excess fluid pressures (0 <  P <  8 MPa) and temperatures (T = 35°C and 80°C) corresponded to the supercritical regime above the critical temperature T C = 31.1°C and critical density ρ C = 0.468 g · cm−3 of the bulk fluid. The results demonstrate that a porous aerogel matrix works to create an adsorbed phase with liquid-like fluid densities reaching ~1.1 g · cm−3 and ~0.8 g · cm−3 at T = 35°C and 80°C, respectively. Thus, despite the fact that the density and volume fraction of the adsorbed fluid both decrease with temperature, the dense adsorbed phase is still present in the aerogel at temperatures far exceeding the T C. Heat treatment (“oxidation”) of the aerogel at 500°C for 2 h, which removes a significant fraction of the alkyl groups from the aerogel surface, has little effect on the adsorption properties. The observed reduction of the density and volume fraction of the adsorbed CO2 with temperature and its minor dependence on the surface modification are consistent with predictions of the pore-filling model.  相似文献   

10.
Lead-free piezoelectric ceramics (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBiCoO3 (x = 0.12–0.24, y = 0–0.04) have been fabricated by a conventional solid-state reaction method, and their structure and electrical properties have been investigated. The XRD analysis shows that samples with y ≤ 0.03 exhibit a pure perovskite phase and very weak impurity reflections can be detected in the sample with y = 0.04. With x increasing from 0.12 to 0.24 and y increasing from 0 to 0.04, the ceramics transform gradually from a rhombohedral phase to a tetragonal phase and rhombohedral–tetragonal phase coexistence to a pseudocubic phase, respectively. The morphotropic phase boundary (MPB) of the system between rhombohedral and tetragonal locates in the range of x = 0.18–0.21, y = 0–0.03. The ceramics near the composition of the MPB have good performances with piezoelectric constant d 33 = 156 pC/N and electromechanical coupling factor k p = 0.34 at x = 0.21 and y = 0.01, which attains a maximum value in this ternary system. Adding content of BiCoO3 leads to a disappearance of the response in the curves of dielectric constant-temperature to the ferroelectric–antiferroelectric transition. The temperature dependence of dielectric properties suggests that the ceramics are relaxor ferroelectrics. The results show that (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBiCoO3 ceramics are good candidate for use as lead-free ceramics.  相似文献   

11.
(1 − x)Bi0.5Na0.5TiO3xBi0.5Li0.5TiO3 lead-free ceramics have been prepared by a conventional solid-state reaction method, and their piezoelectric and dielectric properties have been studied. X-ray diffraction studies reveal that Li+ diffuses into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a pure perovskite structure. The addition of Bi0.5Li0.5TiO3 effectively lowers the sintering temperature of the ceramics and greatly assists in the densification of the ceramics. The ceramic with x = 0.075 possesses the optimum piezoelectric properties: piezoelectric coefficient d 33 = 121 pC/N and planar electromechanical coupling factor k P = 18.3%. After the partial substitution of Li+ for Na+ in the A-sites of Bi0.5Na0.5TiO3, the ceramics exhibit more relaxor characteristic, which is probably resulted from the cation disordering in the 12-fold coordination sites. The depolarization temperature T d shifts to low temperature with the substitution level x of Li+ for Na+ increasing.  相似文献   

12.
New ternary (1−x)K0.5Na0.5NbO3x(0.80LiSbO3–0.20CaTiO3) lead-free ceramics were fabricated by a conventional ceramic technique and their structure and piezoelectric properties were studied. The results of X-ray diffraction reveal that LiSbO3 and CaTiO3 diffuse into the K0.5Na0.5NbO3 lattices to form a new solid solution with a perovskite structure. After the addition of LiSbO3 and CaTiO3, the cubic-tetragonal and tetragonal-orthorhombic phase transitions shift to lower temperatures. Coexistence of the orthorhombic and tetragonal phases is hence formed in the ceramics with 0.03 < x < 0.07 at room temperature, leading to a significant enhancement of the piezoelectric properties. For the ceramics with x = 0.04–0.06, the piezoelectric properties become optimum: d 33 = 172–253 pC/N, k P = 49.9–55.5%, k t = 49.2–52.1% and T C = 348–373 °C. The ceramic with x = 0.04 also exhibits a good thermal stability of piezoelectric properties.  相似文献   

13.
Y2GaSbO7 and Y2YbSbO7 were synthesized by solid state reaction method for the first time. The crystallinity, composition, bandgap, morphology, and grain size of Y2GaSbO7 and Y2YbSbO7 were characterized by a series of analytical techniques. The lattice parameter a for Y2GaSbO7 was found to be 10.17981(1) ?, and the lattice parameters for Y2YbSbO7 were found to be a = 10.49741(9) ?, b = 7.45088(3) ?, c = 7.47148(7) ?, respectively. The values of band gap for Y2GaSbO7 and Y2YbSbO7 were calculated to be 2.245 and 2.521 eV, respectively. The photocatalytic degradation of rhodamine B (RhB) with Y2GaSbO7 or Y2YbSbO7 as photocatalyst was investigated under visible light irradiation. The results showed that Y2GaSbO7 and Y2YbSbO7 owned higher photocatalytic activity compared with Bi2InTaO7. Moreover, Y2GaSbO7 showed higher photocatalytic activity compared with Y2YbSbO7 for the photocatalytic degradation of RhB. The photocatalytic degradation of RhB followed the first-order reaction kinetics. The first-order rate constant, k, was 0.01817, 0.01341, and 0.00329 min−1 for Y2GaSbO7, Y2YbSbO7, and Bi2InTaO7, respectively. Complete removal of RhB was realized after visible light irradiation for 220 or 240 min with Y2GaSbO7 or Y2YbSbO7 as photocatalyst. The reduction of the total organic carbon and the evolution of CO2 were also realized and these results indicated the continuous mineralization of RhB during the photocatalytic process with Y2GaSbO7 or Y2YbSbO7 as photocatalyst. The possible photocatalytic degradation pathway of RhB was revealed under visible light irradiation. Methylene blue and neutral red could be degraded efficiently with Y2GaSbO7 or Y2YbSbO7 as photocatalyst under visible light irradiation.  相似文献   

14.
One novel coordination polymer [Mn2(μ-2,6-DCBA)32-CH3CO2)2(2H2O)]·2H2O (2,6-DCBA = 2,6-dichlorobenzoato) (compound 1) has been synthesized by self-assembly of bridging ligand 2,6-dichlorobenzoic acid and manganese acetate tetrahydrate. Single crystal X-ray diffraction analysis reveals that this compound crystallizes in space group P21/c with a = 10.1547(7), b = 24.5829(2), c = 12.6606(2) Å, β = 93.707(3), V = 3153.9(3) Å3 and Z = 4. The Mn(II) ions are connected by 2,6-DCBA and acetate group in μ-bridging mode to form 1D chains. Two water molecules are in the inter-layer space forming strong hydrogen bonds originating 2D layer structure. The preparation of this compound is very sensitive to the synthesis conditions, mainly to the solution pH and solvent yielding other two compounds 2 and 3. In compound 1 Mn(II) atoms in octahedral coordination are arranged in a zig–zag chain, with a trimeric structure repeated periodically along the chain, giving two exchange parameters: J1 related to a syn–syn bond; and J2 related to a bond of type anti–anti. A theoretical model was developed and then fitted to the magnetic susceptibility data, revealing an antiferromagnetic arrangement along the chain.  相似文献   

15.
CeO2-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics have been fabricated by a conventional ceramic fabrication technique. The ceramics retain the orthorhombic perovskite structure at low doping levels (<1 mol.%). Our results also demonstrate that the Ce-doping can suppress the grain growth, promote the densification, decrease the ferroelectric–paraelectric phase transition temperature (T C), and improve the dielectric and piezoelectric properties. For the ceramic doped with 0.75 mol.% CeO2, the dielectric and piezoelectric properties become optimum: piezoelectric coefficient d 33 = 130 pC/N, planar electromechanical coupling coefficient k p = 0.38, relative permittivity εr = 820, and loss tangent tanδ = 3%.  相似文献   

16.
Ca4-xMgxLa2Ti5O17 ceramics were prepared by a solid state ceramic route for x = 0, 0.5, 1, 2, 3 and 4. The structure and microstructure of the ceramics were investigated using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. X-ray diffraction results show that the Ca4-x Mg x La2Ti5O17 adopts an orthorhombic crystal structure with no secondary phase observed for x from 0 to 0.5. Secondary phase, MgTiO3 occurs with further increasing doping level (1 ≤ x ≤ 3). When x = 4, mixture phases La0.66TiO2.993, MgTiO3 and a trace of unknown phase coexist. Ca4La2Ti5O17 ceramic exhibits a relative permittivity (εr) ~ 65, quality factor (Q × f) ~13,338 GHz (at ~4.75 GHz), and temperature coefficient of resonant frequency (τ f ) ~ 165 ppm/°C. The sintering temperature was distinctly reduced from 1,580 °C for x = 0 to 1,350 °C for x = 4. With increasing Mg content, εr and τf obviously decrease, while Q × f value initially decreases and then increases. The ceramic for x = 2 shows εr ~ 50, Q × f ~ 9,451 and τ f  ~ 62.5 ppm/°C. By the complete replacement of Ca with Mg, Mg4La2Ti5O17 ceramic sintered at 1,350 °C for 4 h combines a high dielectric permittivity (ε r  = 31), high quality factor (Q × f ~ 15,021) and near-zero temperature coefficient of resonant frequency (τ f  ~ 4.0 ppm/°C). The materials are suitable for microwave applications.  相似文献   

17.
The preparation and characterization of a heteroleptic iridium complex [2-(benzo[b]thiophen-2-yl)pyridine]Ir(III)[2-(4H-1,2,4-triazol-3-yl)pyridine] [(Btp)2Ir(PZ)] were reported (2-(benzo[b]thiophen-2-yl)pyridine = Btp; 2-(4H-1,2,4-triazol-3-yl)pyridine = PZ). Electrophosphorescence was investigated in the device structure [indium-tin-oxide (ITO)/poly(ethlenedioxythiophene) (PEDOT)/poly(vinylcarbazole)(PVK)/Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with dimethylphenyl (PFO): (Btp)2Ir(PZ)/Ba/Al] by using this iridium complex as guest and PFO as host. The red electrophosphorescent devices showed a peak emission at approximately 604 nm and shoulder at 654 nm with the Commission International de'Eclairage (CIE) coordinates of (0.64, 0.35) and external quantum efficiency of 7.7% at a doping concentration of 8 wt.% without an electron-transporting material in the emitting layer.  相似文献   

18.
In this paper the structural and electronic properties including band structure, energy gap and density of states have been studied for different phases of Pb(Zr1−xTix)O3 compounds with a wide range of Ti/Zr ratio (i.e. from x = 0 to x = 1). The calculations were performed in the framework of density functional theory (DFT), using the full potential-linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA). In general, our results show that for all cases (x = 0, 0.33, 0.5, 0.66 and 1) by increasing the amount of Ti atoms the band gap decreases, because of the strong hybridization between Ti-3d and O-2p orbital. But, in other hand, decreasing the crystal symmetry results in widening the band gap. For the monoclinic phase (x = 0.5) the effect of excess Ti on the band gap is less than the effect of crystal symmetry, so there is an increase in the band gap.  相似文献   

19.
Supramolecular polymers are attractive in recent years. In this article, a series of pyridine containing polyurethanes (PUPys) with various pyridine contents and various MDI-BDO contents were synthesized from 1,6-hexamethylene diisocyanate (HDI), 1,4-butanediol (BDO), N,N-bis(2-hydroxylethyl) isonicotinamine (BINA) and diphenylmethane diisocyanate (MDI). Thereafter, the moisture absorption of PUPys was mainly investigated systematically from the effect of temperature, relative humidity (RH), pyridine content, MDI-BDO content, the mechanism, and the kinetic of moisture absorption. Results show that the moisture absorption process of PUPys matches with Fick’s second law in the initial stage. The moisture absorption is dependent on the content of N,N-bis(2-hydroxylethyl) isonicotinamine (BINA), e.g., the moisture absorption decreases with the increase of MDI-BDO content as well as the decrease of BINA content. In addition, the moisture absorption increases with the increase of temperature and relative humidity (RH). Accordingly, the moisture absorption process of PUPy45 at RH = 65% and T = 25° can be expressed with the equation: lnM t  = 8.88–2975(1/T) + 0.5lnt. On the basis of the moisture absorption, the shape recovery process of PUPys film under the moisture condition support that PUPys show excellent moisture-responsive shape memory effects.  相似文献   

20.
Various CeO2 M x O y (M x O y  = SiO2, TiO2, ZrO2, and Al2O3) mixed oxides were prepared by microwave induced solution combustion method and analyzed by different complimentary techniques, namely, X-ray diffraction (XRD), Raman spectroscopic (RS), UVVis diffuse reflectance spectroscopy (UV-DRS), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG-DTA), and BET surface area. XRD analyses revealed that CeO2 SiO2 and CeO2 TiO2 mixed oxides are in slightly amorphous form and exhibit only broad diffraction lines due to cubic fluorite structure of ceria. XRD lines due to the formation of cubic Ce0.5Zr0.5O2 were observed in the case of CeO2 ZrO2 sample. RS results suggested defective structure of the mixed oxides resulting in the formation of oxygen vacancies. The UV-DRS measurements provided valid information about Ce4+ ← O2− and Ce3+ ← O2− charge transfer transitions. XPS studies revealed the presence of cerium in both Ce3+ and Ce4+ oxidation states. The ceria–zirconia combination exhibited better oxygen storage capacity (OSC) and CO oxidation activity when compared to other samples. The significance of present synthesis method lays mostly on its simplicity, flexibility, and the easy control of different experimental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号