首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Mixed solvents are a combination of chemical and physical solvents and are used for the removal of acid gases from gas streams. The solubility of CO2 in a mixed nonaqueous solution of methyldiethanolamine (MDEA) (50 wt.%) and triethylene glycol monomethj'l ether (TEGMME) (50 wt.%) has been measured at 40°C. The data are compared with solubility data of CO2 in pure TEGMME. The solubility of CO2 has been measured at 40°C and 100°C in an aqueous mixed solvent consisting of MDEA (40 wt.%) and TEGMME (40 wt. %) and water (20 wt.%) at partial pressures of CO2 up to 12 MPa. The solubility results were compared with the solubility in the nonaqueous mixed solvent and previously reported data of aqueous MDEA. The solubility model of Deshmukh and Mather was used to correlate the data.  相似文献   

2.
An experimental study on the degradation of aqueous solutions of alkanolamine blends, under the presence of carbon dioxide and hydrogen sulfide, was carried out. The studied alkanolamines were: diethanolamine (DEA), methyldiethanolamine (MDEA), and 2-amino-2-methyl-1-propanol (AMP). Degradation experiments were carried out at a temperature of 200°C. The mass fraction of DEA and MDEA in the studied aqueous solutions was 10% and 35%, respectively. AMP was incorporated into the MDEA-DEA aqueous solutions, with concentrations of (0-8) mass fraction. Partially degraded alkanolamine aqueous solutions were analyzed, after about 90 hours, by gas chromatography.

It was found that in all the studied alkanolamine aqueous solutions the MDEA degrades more slowly than DEA under the same experimental conditions. Degradation of both alkanolamines was found to be almost independent of the AMP concentration. AMP exhibits an intermediate stability; it is more resistant to degradation than DEA but less than MDEA. In addition, thermal degradation of DEA and MDEA is minimal up to 200°C.  相似文献   

3.
Equilibrium data of CO2 in aqueous solutions of DEA and AMP for a range of CO2 partial pressure (0.5-100 k Pa) and temperature (25-80°C) obtained using a stirred cell reactor is presented in this paper. The data were analyzed using the Deshmukh and Mather Model. It has been found that this model is able to predict results which are close to the experimental data in terms of the total CO2 loadings and the pH of the solution, an additional parameter which was monitored in this work. Comparison was also made with other published results using the different interaction parameters generated in this work. Good agreement between predicted and experimental values were also observed.  相似文献   

4.
The absorption of H2S into aqueous methyldiethanolamine (MDEA) was studied experimentally over the temperature range 15 to 35°C and for MDEA concentrations from 10 to 25 wt% using a laminar liquid jet device and a stirred-cell absorber. The contact times ranged from 2 × 10-3 to 1 × 10-2 seconds for the jet absorber and from 6 to 38 seconds for the stirred-cell absorber. It was found that the absorption rate data for both devices could be modelled assuming an instantaneous reaction regime for the reaction between H2S and MDEA. The experimental results were interpreted to give an estimate for the diffusion coefficient of MDEA in water. Diffusion coefficient results are consistent for the two apparatuses. A lower bound for the second-order rate constant for the reaction between H2S and MDEA is estimated from the experimental data to be 1.4 × 1010cm3/g mole s at 25°C  相似文献   

5.
In the present work, a simple‐to‐use correlation is developed to predict the solubility of CO2 in aqueous solutions of DEA and MDEA as a function of the reduced partial pressure and temperature. Using the interaction parameters generated, the model is applied to correlate the CO2 loading in different amine solutions. The results from the proposed correlation have been compared with the reported experimental data and it was found that there is a good agreement between the observed data and the model predictions over a wide range of operating conditions in aqueous solutions of both diethanolamine (DEA) and methyldiethanolamine (MDEA).  相似文献   

6.
The rates of absorption of pure carbon dioxide into aqueous diethanolamine solutions were measured at 25°C in a liquid-jet column and a wetted-wall column. Experimental results were analyzed with the chemical absorption theory based on the penetration model. Physical solubility of carbon dioxide in aqueous diethanolamine solutions was determined from the absorption rates measured in a near pseudo first-order reaction regime and was found to show a salting-out effect. The measured absorption rates were in good agreement with the theoretical predictions for gas absorption with an irreversible third-order reaction.  相似文献   

7.
8.
This work presents experimental measurements of foaming tendencies and break times for 50 wt% aqueous solutions of MDEA in contact with nitrogen, methane, and ethane gases from atmospheric pressure to 500 kPa and temperatures from 297 to 358 K. The effect of various contaminants including methanol, HEP (1,4- bis-2-hydroxyethyl piperazine), hexane, and carboxylic acids ranging from formic to dodecanoic acid was investigated. Only those systems containing carboxylic acids heavier than valeric acid exhibited foaming. Foaming tendency in systems containing carboxylic acids was worsened by the addition of methanol and HEP, although the difference was moderate. Foaming was shown to be worse at lower pressure and at higher temperature. Foaming in MDEA systems was shown to be substantially worse than that measured previously by McCarthy and Trebble (1996) for aqueous systems of DEA.  相似文献   

9.
The kinetics of the reaction of CO2 with secondary an alkanolamine linked with alkyl group, methylaminoethanol (MAE), ethytaminoethanol (EAE) and n-butylaminoethanol (BAE), for CO2 recovery from power plant flue gases was investigated using a stirred tank absorber with a plane unbroken gas-liquid interface at 298 K. To evaluate the reaction rate constant from the CO2 absorption rate data under the fast-reaction regime, a combined parameter containing the solubility and diffusivity for N2O in aqueous solutions of sterically hindered amines; MAE, EAE and BAE, was measured using a wetter-wall column apparatus at the same temperature. For further practical evaluation of the reaction rate, apparent rate constants for EAE under the process condition of CO2 removal from power plants were investigated.  相似文献   

10.
DEA复配水溶液二氧化碳溶解度的测定实验   总被引:1,自引:0,他引:1       下载免费PDF全文
李小康  刘应书  张辉  魏广飞  李虎  张四宗 《化工进展》2013,32(4):769-773,778
设计了测定CO2在溶液中溶解度的实验装置,并对2 mol/L的DEA水溶液分别在温度条件为308 K、318 K、328 K、358 K,CO2分压力范围0~150 kPa时的CO2溶解度进行了测定。并选取MDEA、DETA、AEE和SG作为代表添加物,测定了添加剂与DEA 摩尔比为1∶3、醇胺总浓度为2mol/L的条件下溶液中CO2的溶解度。结果表明,在实验压力范围内,DEA溶液中CO2溶解度随压力增大逐渐增大随温度升高而减小;对DEA溶液中CO2的溶解度影响大小顺序为DETA > AEE > SG > MDEA。  相似文献   

11.
如何将AlCl3·6H2O从众多组分中选择性地结晶分离是从煤矸石中提Al的关键,而AlCl3·6H2O在煤矸石酸浸体系中的热力学平衡数据对于结晶过程的控制至关重要。在25~85℃的温度范围内,测定了不同温度和溶液浓度下AlCl3·6H2O在FeCl3、CaCl2、KCl及KCl-FeCl3溶液中的溶解度。实验发现温度对AlCl3·6H2O在所有溶液体系中溶解度的影响均不明显,溶解度只随温度的升高略有增加;溶液浓度是影响溶解度的主要因素,AlCl3·6H2O在所有溶液体系中的溶解度均随溶液浓度的升高而明显下降,分析其原因是由于溶液浓度的增大使得Cl同离子效应增强。为了提高OLI软件预测结果的准确性,对其嵌入Bromley-Zemaitis模型中“Al3+–Cl<...  相似文献   

12.
The electrolyte version of SRK plus association equation of state(e SRK-CPA Eo S) was employed to correlate CO_2 solubility in MDEA aqueous solutions. The applied model comprises the classic form of CPA Eo S including SRK Eo S plus Wertheim association term in addition to MSA theory and Born terms so that the two last terms are responsible for the long-range interactions. A reaction-containing bubble pressure computation technique comprising two nested loops was utilized to model the systems. The internal loop, calculates the liquid phase concentrations via reaction, mass and charge balance equation solving, whereas, the vapor phase concentrations will be obtained in the external one. 470 experimental data were used to correlate binary subsystems and the H_2O + MDEA + CO_2 ternary system. Since, there not exist any binary VLE data for MDEA + CO_2 subsystem, two fitting scenarios were applied. At the first scenario, the binary interaction parameter was assumed equal to zero, while, in second approach the parameter was obtained through ternary system correlation. Both scenarios show very good accuracy in that the Absolute Average Deviation percentages(AAD) obtained were 19.12% and 18.85%, respectively. Also, to show the efficiency of the used model, a comparison between our results and those of the best-known models was made.Finally, having model parameters for H_2S solubility from our previous work [A. Afsharpour, Petroleum Science and Technology 35(3)(2017) 292-298], simultaneous solubility of CO_2+ H_2S mixtures in MDEA solutions was predicted using the e SRK-CPA Eo S with no new optimizable parameters. As the results show,the applied model has a good performance for correlation and prediction of acid gas solubility in a wide range of pressures, temperatures, acid gas loadings, and MDEA concentrations.  相似文献   

13.
In this study, we examine the interaction of N2O with TiO2(1 1 0) in an effort to better understand the conversion of NOx species to N2 over TiO2-based catalysts. The TiO2(1 1 0) surface was chosen as a model system because this material is commonly used as a support and because oxygen vacancies on this surface are perhaps the best available models for the role of electronic defects in catalysis. Annealing TiO2(1 1 0) in vacuum at high temperature (above about 800 K) generates oxygen vacancy sites that are associated with reduced surface cations (Ti3+ sites) and that are easily quantified using temperature programmed desorption (TPD) of water. Using TPD, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS), we found that the majority of N2O molecules adsorbed at 90 K on TiO2(1 1 0) are weakly held and desorb from the surface at 130 K. However, a small fraction of the N2O molecules exposed to TiO2(1 1 0) at 90 K decompose to N2 via one of two channels, both of which are vacancy-mediated. One channel occurs at 90 K, and results in N2 ejection from the surface and vacancy oxidation. We propose that this channel involves N2O molecules bound at vacancies with the O-end of the molecule in the vacancy. The second channel results from an adsorbed state of N2O that decomposes at 170 K to liberate N2 in the gas phase and deposit oxygen adatoms at non-defect Ti4+ sites. The presence of these O adatoms is clearly evident in subsequent water TPD measurements. We propose that this channel involves N2O molecules that are bound at vacancies with the N-end of the molecule in the vacancy, which permits the O-end of the molecule to interact with an adjacent Ti4+ site. The partitioning between these two channels is roughly 1:1 for adsorption at 90 K, but neither is observed to occur for moderate N2O exposures at temperatures above 200 K. EELS data indicate that vacancies readily transfer charge to N2O at 90 K, and this charge transfer facilitates N2O decomposition. Based on these results, it appears that the decomposition of N2O to N2 requires trapping of the molecule at vacancies and that the lifetime of the N2O–vacancy interaction may be key to the conversion of N2O to N2.  相似文献   

14.
The effects of coal properties on N2O and NOx formation from circulating fluidized bed combustion of coal was examined through burning nine typical coals and a coal shale, widely used in China over a wide range of coal ranks, in a bench-scale circulating fluidized bed. It was found that N2O and NOx formation had similar dependence on coal rank. Fixed carbon content and nitrogen content were the most important coal properties to influence N2O and NOx emissions from circulating fluidized bed combustion of coal. A coal with high fixed carbon content had high conversion ratio of fuel-N into N2O and NOx. The conversion ratio of fuel-N into N2O or NOx increased with nitrogen content of coal, whereas it decreased with O/N ratio. No significant correlation between conversion ratio of fuel-N into N2O or NOx and C/N ratio was identified. To clarify the coal property effect, investigation of a wide range of coal rank, is important.  相似文献   

15.
Various hydrotalcite based catalysts were prepared for testing for the catalytic decomposition of N2O. CoAl, NiAl, Co/PdAl, Co/RhAl, and Co/MgAL substituted hydrotalcites and CoLaAl hydroxides offer very good activity at modest temperatures. Precalcination of these materials at ca. 450–500°C, which destroys the hydrotalcite phase, is necessary for optimum activity and life. For Co substituted hydrotalcites, the optimal ratio of Co/Al is 3.0. The temperature for 50% conversion of N2O of these calcined cobalt hydrotalcites is ca. 75°C lower than for the previous highly active Co-ZSM-5. These calcined cobalt hydrotalcite materials display sustained life at temperatures in excess of 670°C in an O2 rich, wet stream with high levels of N2O [10%]. Excess O2 does not seriously impact N2O decomposition, but the combination of both water vapor and O2 does reduce activity by ca. 50%.  相似文献   

16.
The kinetics of N2O decomposition to gaseous nitrogen and oxygen over HZSM-5 catalysts with low content of iron (<400 ppm) under transient and steady-state conditions was investigated in the temperature range of 250–380 °C. The catalysts were prepared from the HZSM-5 with Fe in the framework upon steaming at 550 °C followed by thermal activation in He at 1050 °C. The N2O decomposition began at 280 °C. The reaction kinetics was first order towards N2O during the transient period, and of zero order under steady-state conditions. The increase of the reaction rate with time (autocatalytic behaviour) was observed up to the steady state. This increase was assigned to the catalysis by adsorbed NO formed slowly on the zeolite surface from N2O. The formation of NO was confirmed by temperature-programmed desorption at temperatures >360 °C. The amount of surface NO during the transient increases with the reaction temperature, the reaction time, and the N2O concentration in the gas phase up to a maximum value. The maximum amount of surface NO was found to be independent on the temperature and N2O concentration in the gas phase. This leads to a first-order N2O decomposition during the transient period, and to a zero-order under steady state. A kinetic model is proposed for the autocatalytic reaction. The simulated concentration–time profiles were consistent with the experimental data under transient as well as under steady-state conditions giving a proof for the kinetic model suggested in this study.  相似文献   

17.
Literature data on the rates of reaction between CO2 and alkanolamines (MEA, DEA, DIPA, TEA and MDEA) in aqueous solution are discussed. These data induced us to carry out absorption experiments of CO2 into aqueous DEA, DIPA, TEA and MDEA solutions from which the respective rate constantsThe results for DEA and DIPA were analysed by means of a zwitterion-mechanism which was derived from the mechanism originally proposed by Danckwerts [1The reaction rate of CO2 with aqueous TEA and MDEA solutions shows a significant base catalysis effect which is also reported by Donaldson and Nguy  相似文献   

18.
Kinetics of N2O decomposition over catalyst prepared by calcination of Co–Mn hydrotalcite was examined in integral fixed-bed reactor () at various N2O and O2 initial partial pressure at temperature range of 330–450 °C. Kinetic data were evaluated by linear and non-linear regression method, 15 kinetic expressions were tested. Based on the obtained results a redox model of N2O decomposition was proposed. At low pressures of O2, adsorbed oxygen is formed by the N2O decomposition; the N2O chemisorption is considered as the rate-determining step. On the contrary, at high O2 pressure it could be assumed that adsorbed oxygen species appear as a result of O2 adsorption and the Eley–Rideal mechanism is the rate determining. N2O decomposition is well described by the 1st rate law at N2O and O2 concentrations typical for waste gases.  相似文献   

19.
孙莹  张琳  杨林军 《化工进展》2018,37(10):4088-4097
以单乙醇胺(MEA)、二乙醇胺(DEA)和N-甲基二乙醇胺(MDEA)作为吸收液,利用聚丙烯(PP)中空纤维膜组件进行分离模拟烟气中CO2的实验研究,考察不同吸收液的脱除效率以及长时间连续运行下的膜润湿现象。建立膜相传质阻力随时间变化模型,与实验数据拟合较好。同时将膜丝在不同吸收剂中浸泡,结合接触角、场发射扫描电镜(FE-SEM)、衰减全反射红外光谱(ATR-IR)以及热重(TG)表征分析膜性能的改变。结果表明,相同浓度下,单一吸收剂的CO2脱除效率大小为MEA > DEA > MDEA;当吸收液为1mol/L MEA时,16天后CO2脱除效率从93.3%下降到72.1%;而吸收液为1mol/L DEA时,脱除效率从88.3%到第16天的78%,下降约12%;理论计算得吸收液为1mol/L MEA和1mol/L DEA时,膜相传质阻力分别为10564.06s/m和4881.08s/m;浸渍时间增加,膜接触角减小,疏水性减弱,同时膜孔径变大,出现润湿现象;红外光谱和热重分析表明在MEA溶液作用下膜丝出现溶胀。  相似文献   

20.
The modified Clegg‐Pitzer equation is used to correlate and predict the vapor‐liquid equilibrium of the CO2‐MDEA‐H2O system. Simulated annealing (SA), a computational stochastic technique for finding near global minimum solutions to optimization problems, has been used for parameter estimation in the model to predict VLE of CO2 in aqueous MDEA solution. The solubility of CO2 in aqueous solutions of 23.8 wt % and 30.0 wt % of N‐methyldiethanolamine (MDEA) has been measured over the temperature range of 303‐323 K and CO2 partial pressure range of 1 to 100 kPa. The model predicted equilibria have been found to be in good agreement with the experimental results of VLE measurement of this work as well as those in the open literature. In this work, the SA technique has been used as an alternative to the traditional Levenberg‐Marquardt (LM) technique, to predict the VLE data accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号