首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Umasankar Yogeswaran 《Carbon》2007,45(14):2783-2796
A conductive composite film containing functionalized multi-walled carbon nanotubes (fMWCNTs), gold nanoparticles (Au) with hydroxypropyl-β-cyclodextrin (HPβCD) as catalysts have been synthesized on glassy carbon, gold and on indium tin oxide electrodes by potentiostatic methods. The presence of fMWCNTs and HPβCD in the composite film enhances the active surface coverage concentration of Au by 397.0%. The presence of nanoparticles of gold catalyst in the film enhances the functional properties and produces an overall increase in the sensitivity of the modified electrodes. These modified electrodes exhibit promising electrocatalytic activity towards the oxidation of tyrosine (TYR), guanine (GU), adenine (AD) and thymine (THY) present in pH 7.4 aqueous solutions. Well separated voltammetric peaks are obtained between TYR and GU (80 mV), GU and AD (290 mV), AD and THY (185 mV) present in the analyte mixture. The sensitivity values of the composite films from cyclic voltammetry (CV) and semi derivative differential pulse voltammetry (DPV) show that, the composite film modified electrodes are efficient and they could be applied in biosensor devices. However, a detailed comparison between the sensitivities obtained using CV and semi derivative DPV shows that, the sensitivity obtained in semi derivative DPV technique is higher than CV. Electrochemical quartz crystal microbalance, scanning electrochemical microscope and scanning electron microscope techniques have been used for the electrochemical characterizations and surface morphology studies.  相似文献   

2.
A polymerized film of eriochrome black T (EBT) was prepared on the surface of a glassy carbon (GC) electrode in alkaline solution by cyclic voltammetry (CV). The redox response of the poly(EBT) film at the GC electrode appeared in a couple of redox peak in 0.1 M hydrochloride and the pH dependent peak potential was −55.1 mV/pH which was close to the Nernst behavior. The poly(EBT) film-coated GC electrode exhibited excellent electrocatalytic activity towards the oxidations of dopamine (DA), ascorbic acid (AA) and uric acid (UA) in 0.05 mM phosphate buffer solution (pH 4.0) and lowered the overpotential for oxidation of DA. The polymer film modified GC electrode conspicuously enhanced the redox currents of DA, AA and UA, and could sensitively and separately determine DA at its low concentration (0.1 μM) in the presence of 4000 and 700 times higher concentrations of AA and UA, respectively. The separations of anodic peak potentials of DA-AA and UA-DA reached 210 mV and 170 mV, respectively, by cyclic voltammetry. Using differential pulse voltammetry, the calibration curves for DA, AA and UA were obtained over the range of 0.1-200 μM, 0.15-1 mM and 10-130 μM, respectively. With good selectivity and sensitivity, the present method provides a simple method for selective detection of DA, AA and UA in biological samples.  相似文献   

3.
Functionalized polypyrrole film were prepared by incorporation of [Fe(CN)6]4− as a doping anion, during the electropolymerization of pyrrole onto a carbon paste electrode in an aqueous solution by potentiostatic method. The electrochemical behavior of dopamine (DA) and ascorbic acid (AA) in one solution was studied at the surface of bare and modified carbon paste electrodes using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and differntial pulse voltammetry (DPV) methods. The well separated anodic peaks for oxidation of DA and AA were observed at the surface of the modified carbon paste electrode under optimum condition (pH 6.00), which can be used for determination of these species simultaneously in mixture by LSV and DPV methods. The linear analytical curves were obtained in the ranges of 0.10-1.00 mM and 0.10-0.95 mM for ascorbic acid and 0.10-1.20 mM and 0.20-0.95 mM for dopamine concentrations using LSV and DPV methods, respectively. The detection limits (2σ) were determined as 3.38 × 10−5 M and 1.34 × 10−5 M of ascorbic acid and 3.86 × 10−5 M and 1.51 × 10−5 M of dopamine by CV and DPV methods.  相似文献   

4.
5-Hydroxytryptophan (5-HTP) was covalently grafted on the surface of glassy carbon electrodes (GCEs) using cyclic voltammetric method in a phosphate buffer solution. The prepared electrode, denoded as 5-HTP/GCE, was characterized by X-ray photoelectron spectroscopy, cyclic voltammetry and differential pulse voltammetry (DPV). Tryptophan grafted GCE (TRP/GCE) and 5-hydroxytryptamine grafted GCE (5-HTP/GCE) were also prepared by the same method for comparison. It was found that the electrocatalytic activities toward the oxidation of uric acid (UA) and ascorbic acid (AA) was in the order of 5-HT/GCE > 5-HTP/GCE > TRP/GCE for UA oxidation and 5-HT/GCE = 5-HTP/GCE > TRP/GCE for AA oxidation. However, the CV current sensitivity was estimated as 4:2:1 for 5-HTP/GCE:5-HT/GCE:TRP/GCE. The DPV peaks for UA and AA oxidation appeared at 0.07 V and 0.34 V versus SCE, respectively, allowing simultaneous determination in mixtures. A linearly response in the range of: 5.0 × 10−7 to 1.1 × 10−5 M with the detection limit (s/n = 3) of 2.8 × 10−7 M for UA determination, and a linear response in the range of: 5.0 × 10−6 to 1.0 × 10−4 M with the detection limit of 4.2 × 10−6 M for AA determination were obtained. This electrode was used for UA and AA determinations in human urine samples satisfactorily.  相似文献   

5.
A new gold nanoparticles-modified electrode (GNP/LC/GCE) was fabricated by self-assembling gold nanoparticles to the surface of the l-cysteine-modified glassy carbon electrode. The modified electrode showed an excellent character for electrocatalytic oxidization of uric acid (UA) and ascorbic acid (AA) with a 0.306 V separation of both peaks, while the bare GC electrode only gave an overlapped and broad oxidation peak. The anodic currents of UA and AA on the modified electrode were 6- and 2.5-fold to that of the bare GCE, respectively. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of UA and AA has been explored at the modified electrode. DPV peak currents of UA and AA increased linearly with their concentration at the range of 6.0 × 10−7 to 8.5 × 10−4 mol L−1 and 8.0 × 10−6 to 5.5 × 10−3 mol L−1, respectively. The proposed method was applied for the detection of UA and AA in human urine with satisfactory result.  相似文献   

6.
Lei Zhang 《Electrochimica acta》2007,52(24):6969-6975
Polyaniline-β-naphthalenesulfonic acid composite film on platinum electrode surface has been synthesized via the electrochemical polymerization of aniline in the presence of β-naphthalenesulfonic acid (NSA). FT-IR, UV-vis and electrochemical characterization indicate the formation of the doped polyaniline. Further investigations found that the polyaniline (PAN) doped with NSA extended the electroactivity of PAN in neutral and even in alkaline media. The PAN-NSA composite film coated platinum electrodes are shown to be good electrocatalytic surfaces for the oxidation of ascorbic acid (AA) in phosphate buffer solution (PBS) of pH 7.0. The anode peak potential of AA shifts from 0.62 V at bare platinum electrode to 0.34 V at the PAN-NSA composite modified platinum electrode with greatly enhanced current response. A linear calibration graph is obtained over the AA concentration range of 5-60 mM using cyclic voltammetry. The kinetics of the catalytic reaction is investigated using rotating disk electrode (RDE) voltammetry, cyclic voltammetry and chronoamperometry. The results are explained using the theory of electrocatalytic reactions at chemically modified electrodes. The PAN-NSA composite film on the electrode surface shows good reproducibility and stability.  相似文献   

7.
The electrochemistry of dopamine (DA) was investigated by cyclic voltammetry (CV) and differential pulse voltammograms (DPV) at a glassy carbon electrode modified by the hybridization adducts of Fc-SWNTs. The electro-oxidation of DA could be catalyzed by Fc/Fc+ couple as a mediator and had a higher electrochemical response due to the unique carbon surface of carbon nanotubes. The anodic peaks of DA, ascorbic acid (AA) and uric acid (UA) in their mixture can be well separated by the prepared electrode. Under optimum conditions linear calibration graphs were obtained over the DA concentration range 5.0 × 10−6 to 3.0 × 10−5 M with a correlation coefficient of 0.9998 and a detection limit of 5.0 × 10−8 M based on the equation Cm = 3sb1/m. The modified electrode has been successfully applied for the assay of DA in human blood serum. This work provides a simple and easy approach to selectively detect DA in the presence of AA and UA.  相似文献   

8.
A novel composite film which contains ordered mesoporous carbon (OMC) along with the incorporation of poly(neutral red) (PNR) has been synthesized on glassy carbon electrode by potentiostatic method. This composite film was characterized by scanning electron microscope (SEM) and cyclic voltammetry (CV). Two pairs of the redox peaks appear at formal potential E0′ = +0.045 V (peak I) and E0′ = −0.49 V (peak II) at the PNR/OMC/GC electrode. And it is found that only the redox waves (peak I) exhibits good electrocatalytic activity towards nicotinamide adenine dinucleotide (NADH) and 2-mercaptoethanol (2-ME). Under a lower operation potential of +0.07 V, amperometry method was used to determine the concentration of NADH and 2-ME, respectively. In pH 7.0, sensors for two molecules under their corresponding optimized conditions were developed with acceptable sensitivity and low detection limits in large determination ranges. In addition, these sensors have good reproducibility and stability.  相似文献   

9.
Multi walled carbon nanotube modified carbon-ceramic electrode (MWCNT/CCE) was employed for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The MWCNT/CCE displayed very good electrochemical catalytic activities with respect to CCE. The oxidation over-potentials of AA, DA and UA decreased dramatically, and their oxidation peak currents increased significantly at MWCNT/CCE compared to those obtained at the bare CCE. Differential pulse voltammetry was used for the simultaneous determination of AA, DA and UA in their ternary mixture. The peak separation between AA and DA, and DA and UA was large up to 205 and 160 mV, respectively. The calibration curves for AA, DA and UA were obtained in the range of 15.00-800.00, 0.50-100.00, and 0.55-90.00 μM, respectively. The detection limits (S/N = 3) were 7.71, 0.31, and 0.42 μM for AA, DA and UA, respectively.The present method was applied to the determination of AA, DA and UA in human serum and some commercial pharmaceutical samples, using standard adding method and the results were quite promising.  相似文献   

10.
A glassy carbon electrode modified with LaHCF was constructed and was characterized by cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The resulting LaHCF modified glassy carbon electrode had a good catalytic character on uric acid (UA) and was used to detect uric acid and ascorbic acid (AA) simultaneously. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards UA and AA with activation overpotential. For UA and AA in mixture, one can well separate from the other with a potential large enough to allow the determination of one in presence of the other. The DPV peak currents obtained increased linearly on the UA in the range of 2.0 × 10−7 to 1.0 × 10−4 mol/L with the detection limit (signal-to-noise ratio was 3) for UA 1.0 × 10−7 mol/L. The proposed method showed excellent selectivity and stability, and the determination of UA and AA simultaneously in urine was satisfactory.  相似文献   

11.
This paper describes the preparation, characterization and application of a composite electrode based on methylene blue adsorption to phosphorylated zirconia-silica mixed oxide particles prepared by a sol-gel process. This electrode electrocatalytically oxidizes ascorbic acid (AA), dopamine (DA) and uric acid (UA), allowing their simultaneous voltammetric detection. Well-defined and -separated oxidation peaks were observed by differential pulse voltammetry in a 0.35 mol l−1 Tris-HCl buffer solution (pH 7.4) containing 0.5 mol l−1 KCl. The anodic peak currents observed at −74, 94 and 181 mV increased with increasing concentrations of AA, DA and UA, respectively. Linear calibration plots were obtained over the range of 100-1600 μmol l−1 for ascorbic acid, 6-100 μmol l−1 for dopamine and 22-350 μmol l−1 for uric acid with detection limits of 8.3 ± 0.1, 1.7 ± 0.1 and 3.7 ± 0.2 μmol l−1, respectively. DA and UA concentrations could also be determined under conditions of excess AA (1 mmol l−1).  相似文献   

12.
Palladium (Pd) incorporated poly (3,4-ethylenedioxythiophene) (PEDOT) films were synthesized through an electrochemical route and characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrochemical study showed catalytic oxidation of dopamine (DA) with optimum loading of Pd. DA and uric acid (UA) were detected using differential pulse voltammetry (DPV). In the presence of ascorbic acid (AA), DA-AA showed peak potential separation of 0.19 V while 0.32 V between UA-AA on Pd-incorporated PEDOT. These peak separations are large enough for sensing DA and UA in the presence of AA. DA and UA exhibited linear calibration plots and the minimum detection limits are 0.5 and 7 μM respectively. On Pd-PEDOT, the reversibility of DA oxidation was found to increase compared to bare glassy carbon electrode (GCE) and PEDOT modified GCE. Fouling effects were also found to be minimal making Pd-PEDOT composite suitable for electroanalysis.  相似文献   

13.
The electrochemical behavior of ascorbic acid (AA) and uric acid (UA) at the surface of a carbon-paste electrode modified with incorporate thionine-nafion ion-paired was thoroughly investigated. The results show the presence of nafion inside the matrix of modified electrode, because of the effective ion-pairing and hydrophobic interactions, significantly enhances the stability of thionine as an electron mediator inside the modified electrode. A high reproducibility in voltammetric response to analyte species results because of this enhancement. The cyclic voltammetric studies using the prepared modified electrode show the best electrocatalytic property for the electro-oxidation of AA and noticeable decrease in anodic overpotential. Although the catalytic effect is observed to some extent for UA, the property cannot be seen for other biologically reducing agents such as cysteine. The voltammetric studies using the thionine-nafion modified electrode show two well-resolved anodic peaks for AA and UA, revealing the possibility of the simultaneous electrochemical detection of these compounds in the presence of biological thiols. The detection limits of 5 × 10−8 and 5 × 10−7 M were obtained in differential pulse voltammetric (DPV) measurements for UA and AA, respectively. Spectrophotometric investigations were used to confirm the selective catalytic effect of thionine in oxidation of AA and to some extent, UA. The detection system is stable (R.S.D. for the slope of the calibration curves was less than 4% for six measurements in one month) and is of high selectivity for electro-oxidation of AA and UA in complex biological and clinical matrices. The prepared modified electrode is applied for the DPV measurement of AA in pharmaceutical preparations. Also, the electrode is used to determine UA in human urine and serum samples and recovery of the amounts of UA added to these complex samples.  相似文献   

14.
Composite G/PPy/PPy(La1−xSrxMnO3)/PPy electrodes made of the perovskite La1−xSrxMnO3 embedded into a polypyrrole (PPy) layer, sandwiched between two pure PPy films, electrodeposited on a graphite support were investigated for electrocatalysis of the oxygen reduction reaction (ORR). PPy and PPy(La1−xSrxMnO3) (0≤ x ≤0.4) successive layers have been obtained on polished and pretreated graphite electrodes following sequential electrodeposition technique. The electrolytes used in the electrodeposition process were Ar saturated 0.1 mol dm−3 pyrrole (Py) plus 0.05 mol dm−3 K2SO4 with and without containing a suspension of 8.33 g L−1 oxide powder. Films were characterized by XRD, SEM, linear sweep voltammetry, cyclic voltammetry (CV) and electrochemical impedance (EI) spectroscopy. Electrochemical investigations were carried out at pH 12 in a 0.5 mol dm−3 K2SO4 plus 5 mmol dm−3 KOH, under both oxygenated and deoxygenated conditions. Results indicate that the porosity of the PPy matrix is considerably enhanced in presence of oxide particles. Sr substitution is found to have little influence on the electrocatalytic activity of the composite electrode towards the ORR. However, the rate of oxygen reduction decreases with decreasing pH of the electrolyte from pH 12 to pH 6. It is noteworthy that in contrast to a non-composite electrode of the same oxide in film form, the composite electrode exhibits much better electrocatalytic activity for the ORR.  相似文献   

15.
A novel modified glassy carbon electrode (GCE) with a binuclear copper complex was fabricated using a cyclic voltammetric method in phosphate buffer solution. This modified electrode shows very efficient electrocatalytic activity for anodic oxidation of both dopamine (DA) and ascorbic acid (AA) via substantial decrease in anodic overpotentials for both compounds. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using this modified electrode show two well-resolved anodic waves for the oxidation of DA and AA in mixed solution, which makes it possible for simultaneous determination of both compounds. Linear analytical curves were obtained in the ranges 2.0–120.0 μM and 5.0–160.0 μM for DA and AA concentrations by using DPV methods, respectively. The detection limits were 1.4 × 10−6 M of DA and 2.8 × 10−6 M of AA. This electrode was used for AA and DA determinations in medicine and foodstuff samples with satisfactory results.  相似文献   

16.
Fang Ye  Lishi Wang 《Electrochimica acta》2008,53(12):4156-4160
5-[o-(4-Bromine amyloxy)phenyl]-10,15,20-triphenylporphrin (o-BrPETPP) was electropolymerized on a glassy carbon electrode (GCE), and the electrocatalytic properties of the prepared film electrode response to dopamine (DA) oxidation were investigated. A stable o-BrPETPP film was formed on the GCE under ultrasonic irradiation through a potentiodynamic process in 0.1 M H2SO4 between −1.1 V and 2.2 V versus a saturated calomel electrode (SCE) at a scan rate of 0.1 V s−1. The film electrode showed high selectivity for DA in the presence of ascorbic acid (AA) and uric acid (UA), and a 6-fold greater sensitivity to DA than that of the bare GCE. In the 0.05 mol L−1 phosphate buffer (pH 6.0), there was a linear relationship between the oxidation current and the concentration of DA solution in the range of 5 × 10−7 mol L−1 to 3 × 10−5 mol L−1. The electrode had a detection limit of 6.0 × 10−8 mol L−1(S/N = 3) when the differential pulse voltammetric (DPV) method was used. In addition, the charge transfer rate constant k = 0.0703 cm s−1, the transfer coefficient α = 0.709, the electron number involved in the rate determining step nα = 0.952, and the diffusion coefficient Do = 3.54  10−5 cm2 s−1 were determined. The o-BrPETPP film electrode provides high stability, sensitivity, and selectivity for DA oxidation.  相似文献   

17.
Determination of uric acid (UA) levels in body fluids is important for diagnostics and prevention of severe metabolic disorders. Electrochemical determination of the UA relies on an oxidation signal measurable at different carbon-based electrodes. Improvement of the UA electrochemical sensing has usually been attained via various modifications of the electrode surfaces. In this paper we show that a strong enhancement of the UA oxidation signal can be reached by a simple mechanical grinding of the surfaces of glassy carbon or edge plane-oriented pyrolytic graphite electrodes with SiC particles of an optimum size 15 μm. In contrast to fine polished electrodes (finally with 1-μm particles), the grinded ones exhibited an excellent separation of oxidation signals of ascorbic acid, dopamine (representing most important natural interferents in UA determination), xanthine and hypoxanthine (precursors of UA in purine catabolism), making it possible to detect these substances in a mixture. Enhancement of UA and dopamine (DA) oxidation signals at the grinded electrodes allowed their easy detection at nanomolar levels in up to 104-fold excesses of ascorbic acid. Due to a strong adsorption at the electrode surface, nanomolar concentrations of UA and DA can be determined by ex situ voltammetry. Similarly strong enhancement of oxidation signals was observed for purine nucleobases, guanine and adenine. The grinded electrodes have been tested in analysis of real clinical samples of human serum or urine. An excellent agreement between electrochemical and routine biochemical determination of UA in the biological samples is demonstrated.  相似文献   

18.
A novel ECR-modified electrode is fabricated by electrodeposition of Eriochrome Cyanine R (ECR) at a glassy carbon (GC) electrode by cyclic voltammetry (CV) in double-distilled water. The characterization of the ECR film modified electrode is carried out by atomic force microscopy (AFM), infrared spectra (IR), spectroelectrochemistry and cyclic voltammetry. The results show that a slightly heterogeneous film formed on the surface of the modified electrode, and the calculated surface concentration of ECR is 2 × 10−10 mol/cm−2. The ECR film modified GC electrode shows excellent electrocatalytic activities toward the oxidation of serotonin (5-HT) and norepinephrine (NE). Furthermore, the modified electrode can separately detect 5-HT and NE, even in the presence of 200-fold concentration of ascorbic acid (AA) and 25-fold concentration of uric acid (UA). Using differential pulse voltammetry (DPV), the peak currents of 5-HT and NE recorded in pH 7 solution are linearly dependent on their concentrations in the range of 0.05-5 μM and 2-50 μM, respectively. The limits of detection are 0.05 and 1.5 μM for 5-HT and NE, respectively. The ECR film modified electrode can be stored stable for at least 1 week in 0.05 M PBS (pH 7) at 4 °C in a refrigerator. Owing to its excellent selectivity and sensitivity, the modified electrode could provide a promising tool for the simultaneous determination of 5-HT and NE in complex biosamples.  相似文献   

19.
A glassy carbon electrode modified with CeO2 nanoparticles was constructed and was characterized by electrochemical impedance spectrum (EIS) and cyclic voltammetry (CV). The resulting CeO2 nanoparticles modified glassy carbon electrode (CeO2 NP/GC electrode) was used to detect uric acid (UA) and ascorbic acid (AA) simultaneously in mixture. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards UA and AA with activation overpotential. For UA and AA in mixture, one can well separate from the other with a potential difference of 273 mV, which was large enough to allow the determination of one in presence of the other. The DPV peak currents obtained in mixture increased linearly on the UA and AA in the range of 5.0 × 10−6 to 1.0 × 10−3 mol/L and 1.0 × 10−6 to 5.0 × 10−4 mol/L, with the detection limit (signal-to-noise ratio was 3) for UA and AA were 2.0 × 10−7 and 5.0 × 10−6 mol/L, respectively. The proposed method showed excellent selectivity and stability, and the determination of UA and AA simultaneously in serum was satisfactory.  相似文献   

20.
In this study, multilayer films containing chitosan, tin disulfide (SnS2) nanoparticles, and single‐walled carbon nanotubes were prepared on glassy carbon electrodes with the use of a layer‐by‐layer assembly technique. The resulting films were characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy, and ultraviolet–visible absorption spectroscopy. The results of CV and EIS indicates that the peak currents and charge‐transfer resistance all had linear responses to the number of assembled layers. The multilayer‐film‐modified electrode showed excellent electrocatalytic properties for some species, such as dopamine hydrochloride (DA), ascorbic acid (AA), and uric acid (UA). The well‐separated voltammetric signals of DA, UA, and AA could be obtained on the assembled multilayer‐film‐modified electrode, and the peak‐to‐peak potential separations were 171, 136, and 307 mV for DA–UA, DA–AA, and UA–AA on CV, respectively. These facts showed that the multilayer‐film‐modified electrode could be used as a new sensor for the simultaneous detection of DA and UA in the presence of AA in a real sample. In addition, the multilayer films were stable, selective, and reproducible. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号