首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Design of a bilinear fault detection observer for singular bilinear systems   总被引:2,自引:0,他引:2  
A bilinear fault detection observer is proposed for a class of continuous time singular bilinear systems subject to unknown input disturbance and fault. By singular value decomposition on the original system, a bilinear fault detection observer is proposed for the decomposed system via an algebraic Riccati equation, and the domain of attraction of the state estimation error is estimated. A design procedure is presented to determine the fault detection threshold. A model of flexible joint robot is used to demonstrate the effectiveness of the proposed method.  相似文献   

2.
A parametric approach to robust fault detection in linear systems with unknown disturbances is presented. The residual is generated using full-order state observers (FSO). Based on an analytical solution to a type of Sylvester matrix equations, the parameterization of the observer gain matrix is given. In terms of the design degrees of freedom provided by the parametric observer design and a group of introduced parameter vectors, a sufficient and necessary condition for fullorder state observer design with disturbance decoupling is then established. By properly constraining the design parameters according to this proposed condition, the effect of the disturbance on the residual signal is also decoupled, and a simple algorithm is developed. The presented approach offers all the degrees of design freedom. Finally, a numerical example illustrates the effect of the proposed approach.  相似文献   

3.
This paper investigates the problem of event-triggered ${\rm H}_\infty$ state estimation for Takagi-Sugeno (T-S) fuzzy affine systems. The objective is to design an event-triggered scheme and an observer such that the resulting estimation error system is asymptotically stable with a prescribed ${\rm H}_{\infty}$ performance and at the same time unnecessary output measurement transmission can be reduced. First, an event-triggered scheme is proposed to determine whether the sampled measurements should be transmitted or not. The output measurements, which trigger the condition, are supposed to suffer a network-induced time-varying and bounded delay before arriving at the observer. Then, by adopting the input delay method, the estimation error system can be reformulated as a piecewise delay system. Based on the piecewise Lyapunov-Krasovskii functional and the Finsler''s lemma, the event-triggered ${\rm H}_{\infty}$ observer design method is developed. Moreover, an algorithm is proposed to co-design the observer gains and the event-triggering parameters to guarantee that the estimation error system is asymptotically stable with a given disturbance attenuation level and the signal transmission rate is reduced as much as possible. Simulation studies are given to show the effectiveness of the proposed method.  相似文献   

4.
This paper deals with the simultaneous estimation of states and unknown inputs for a class of Lipschitz nonlinear systems using only the measured outputs. The system is assumed to have bounded uncertainties that appear on both the state and output matrices. The observer design problem is formulated as a set of linear constraints which can be easily solved using linear matrix inequalities (LMI) technique. An application based on manipulator arm actuated by a direct current (DC) motor is presented to evaluate the performance of the proposed observer. The observer is applied to estimate both state and faults.  相似文献   

5.
This paper is concerned with the stabilization problem for a class of nonlinear systems with disturbance. The disturbance model is unknown and the first derivative of disturbance is bounded. Firstly, a general disturbance observer is proposed to estimate disturbance approximatively. Secondly, since the bound of the disturbance observer error is unknown, an adaptive sliding mode controller is designed to guarantee that the state of system asymptotically converges to zero and the unknown bound can be adjusted by an adaptive law. Finally, an example is given to illustrate the effectiveness of the proposed method.  相似文献   

6.
This paper studies the synchronized output regulation (SOR) problem of networked dynamic systems with switching topology that is uniformly connected and leader-rooted. In these networked systems, the tracked signal or the rejected disturbance is generated by the same exosystem, and however, the state of the exosystem is only available for leader nodes. First, a synchronization observer of the exosystem is proposed in this paper to overcome the difficulty caused by the unavailable state of the exosystem for follower nodes with directed switching information flow. It is shown that the observer state will synchronize to the state of the exosystem. Then, two feedback controllers based on decentralized dynamic error and state are presented to solve this SOR problem. Furthermore, the main idea in this paper will provide a promising way for realizing the multirobot systems’ tracking and formation requirement. Numerical simulation results are presented to demonstrate the effectiveness of the theoretical results.  相似文献   

7.
Robust fault diagnosis for a class of nonlinear systems   总被引:1,自引:0,他引:1  
Robust fault diagnosis based on adaptive observer is studied for a class of nonlinear systems up to output injection. Adaptive fault updating laws are designed to guarantee the stability of the diagnosis system. The upper bounds of the state estimation error and fault estimation error of the adaptive observer are given respectively and the effects of parameter in the adaptive updating laws on fault estimation accuracy are also discussed. Simulation example demonstrates the effectiveness of the proposed methods and the analysis results.  相似文献   

8.
In this paper, we present a sampled-data nonlinear extended state observer (NLESO) design method for a class of nonlinear systems with uncertainties and discrete time output measurement. To accommodate the inter-sample dynamics, an inter-sample output predictor is employed in the structure of the NLESO to estimate the system output in the sampling intervals, where the prediction is used in the proposed observer instead of the system output. The exponential convergence of the sampled-data NLESO is also discussed and a sufficient condition is given by the Lyapunov method. A numerical example is provided to illustrate the performance of the proposed observer.  相似文献   

9.
In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach.  相似文献   

10.
In this paper, an enhanced adaptive nonlinear extended state observer (EANESO) for single-input single-output pure feedback systems in the presence of external time-varying disturbances is proposed. In this paper, a nonlinear system with matched and mismatched disturbances is considered. The conventional extended state observer (ESO) can only be applied to systems that are in the form of integral chains. Moreover, this method has limitations in the face of mismatched disturbances. In the presence of time-varying disturbances, the traditional ESOs cannot estimate the disturbances accurately. To overcome this limitation, an EANESO is proposed in this paper. The main idea is to design the nonlinear ESO (NESO) to estimate the states of the system and multiple disturbances simultaneously. The observer gains are considered time-varying and adjusted with adaptation laws to improve the estimation accuracy and overcome the peaking phenomenon. Next, the proposed controller is designed based on output feedback to eliminate the effects of multiple disturbances and stabilize the closed-loop system. Subsequently, the stability analysis of the closed-loop system and convergence of the observer error are discussed. Finally, the proposed method is applied to the inverted pendulum system. The simulated results show good performance of the proposed method as compared with a recently published scheme in the related literature.  相似文献   

11.
董亚丽  梅生伟 《自动化学报》2007,33(10):1081-1084
研究一类非线性系统的观测器设计方法, 这类非线性系统满足 Lipschitz 条件且含有未知参数. 提出了全状态自适应观测器设计的新方法. 构造的观测器能保证状态估计误差及参数估计误差渐近收敛于零. 文中给出数值例验证了观测器的有效性.  相似文献   

12.
There are two contributions of this note. First, it clarifies and unifies the two design approaches which will generate the general state observer and the identity state observer, respectively. Especially for the first approach, even a very recent paper failed to clarify it. Second, this note shows that due to computational error, the general state observer will have an estimation error while the identity state observer will have an error in its desired poles.  相似文献   

13.
Nonlinear observer design via passivation of error dynamics   总被引:1,自引:0,他引:1  
We present a new design scheme of nonlinear state observers (global, full order, asymptotic observers) through passivation of the error dynamics. In order to consider passivity of the error dynamics for the observer problem, we place a conceptual input and output on the generalized error dynamics which also includes the plant, and the strictness of passivity is extended with respect to a set in which the estimation error becomes zero. Then, output feedback passivation for the error dynamics will lead to the construction of a state observer. It is also shown that a nonlinear observer is generally vulnerable to measurement disturbance, in the sense that even an arbitrarily small measurement disturbance can lead to a blowup of the error state. However, due to the passivity of the error dynamics, the proposed nonlinear injection gain can be easily modified for the observer to be robust to measurement disturbances.  相似文献   

14.
In this article, a triple state and output variable transformation-based method combined with linear matrix inequality (LMI) techniques to design a new robust reduced-order sliding mode observer for perturbed linear multiple-input and multiple-output systems is developed. The state and output variables of the original system are triple transformed into suitable canonical form coordinates to facilitate the design of a reduced-order observer. The existing transformations are summarised in this study and presented systematically. A new combined observer configuration is proposed and compared with another type of observers. Global asymptotical stability LMI and sliding mode existence conditions for the coupled observer error system are derived using Lyapunov full quadratic form. Reaching and sliding modes of motion of decoupled observer error system are discussed as well. Two numerical and simulation examples are given to illustrate the usefulness of the proposed design techniques.  相似文献   

15.
This paper deals with the design of a nonlinear observer for sensorless induction motor control. Based upon the circle criterion approach, a nonlinear observer is designed to estimate pertinent but unmeasurable state variables of the considered induction machine for sensorless control purpose. The observer gain matrices are computed as a solution of linear matrix inequalities(LMI) that ensure the stability conditions of the state observer error dynamics in the sense of Lyapunov concepts. Measured and estimated state variables can be exploited to perform a state feedback control of the machine system. The simulation results are presented to illustrate the effectiveness of the proposed approach for nonlinear observer design.  相似文献   

16.
In this article, the problem of state observer design for a class of multi-input multi-output nonlinear systems is considered. Via state transformation and the constructive use of a Lyapunov function, the new observer design approach is addressed by introducing a parameter ? in the observer. Some sufficient conditions are given which guarantee the estimation error to asymptotically converge to zero under adaptive conditions. An example is included to illustrate the method.  相似文献   

17.
研究一类多输入多输出仿射非线性系统的状态观测器设计问题. 基于输入输出线性化方法提出了一类多输入多输出仿射非线性系统的状态观测器设计的新方法, 并给出保证状态估计误差渐近趋于零的充分条件. 算例表明了所得结果的有效性.  相似文献   

18.
For a system possessing a non-linear output feedback normal form, an observer backstepping design is compared to a high gain observer design with respect to non-singular performance cost functional. If the initial error between the initial condition of the state and the initial condition of the observer is large, the high gain observer design is shown to have better performance than the observer backstepping design. An output feedback system with parametric uncertainty is then considered. It is shown that if an a priori estimate for the bound of the uncertain parameter is conservative, then an adaptive observer backstepping design has better performance than the adaptive high gain observer design.  相似文献   

19.
非线性时滞系统的观测器设计   总被引:1,自引:0,他引:1  
研究了一类满足Lipschitz条件的下三角非线性时滞系统的观测器设计问题.通过构造适当的Lyapunov泛函,用递推法给出了使得误差动态系统渐近趋于零的非线性时滞系统的状态观测器.  相似文献   

20.
This paper contains a comparative study of four techniques for observing the slates of non-linear systems. The first technique examined is inspired by Bestle and Zeitz, and ICrener and Respondek, In this method a non-linear transformation is found that brings the system into a canonical form, from where observer design is facilitated. The second technique is attributable to Thau. In this method, the error between the system's true state and the output of the observer is shown to be asymptotically convergent to zero provided that an additional assumption is valid. The third technique is due to Baumann and Rugh. In this method, extended or pseudolinearization of the error differential equation about a family of equilibrium points results in an observer design such that the eigenvalues of the linearized error equation are locally invariant. Finally, techniques from variable-structure systems are utilized to design an observer that yields an exponentially decaying error like Thau's observer, but, unlike Thau's, does not incorporate the non-linearities of the system into the observer design. An example illustrating the performance of the four techniques is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号