首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
混合铅锌精矿化学分析方法中的砷、镉、铜等杂质的含量,是采用每个元素分别测定的方法,测定周期长,分析成本高。因此,作者提出采用一次溶样,用电感耦合等离子体原子发射光谱法(即ICP-AES法)对原标准中砷、镉、铜同时进行测定,并增加了钴、铋、镍、锑4种杂质元素的测定。经大量的试验和实际样品测定,结果表明该方法快速,准确、可靠,加标回收率均在95%~106%之间。能够满足混合铅锌精矿中砷、铋、镉、钴、铜、镍、锑含量的测定要求。  相似文献   

2.
镍电解液的复杂高盐基体对其中微量铜的监测产生干扰。将旋转圆盘电极原子发射光谱(RDE-AES)与标准加入法结合,无需样品前后处理,无基体效应,采用改进后的校准曲线测定镍电解液工艺流程中不同中间液中的微量铜。根据元素蒸发曲线,确定预燃时间6 s、采集时间7~30 s,预燃激发改善了盘电极的润湿性,从而保证进样量的稳定性;合理的曝光时间可以在保证分析元素强度灵敏度的前提下提高分析速度,单次检测时间小于35 s。选用Ni 324.845 7 nm为内标,校正激发行为和进样量误差。方法检出限为0.15 mg/L。按照实验方法测定镍电解液工艺流程中不同中间液中微量铜,结果的相对标准偏差(RSD,n=6)小于12%,加标回收率为98%~110%。  相似文献   

3.
镍电解液的复杂高盐基体对其中微量铜的监测产生干扰。将旋转圆盘电极原子发射光谱(RDE-AES)与标准加入法结合,无需样品前后处理,无基体效应,采用改进后的校准曲线测定镍电解液工艺流程中不同中间液中的微量铜。根据元素蒸发曲线,确定预燃时间6 s、采集时间7~30 s,预燃激发改善了盘电极的润湿性,从而保证进样量的稳定性;合理的曝光时间可以在保证分析元素强度灵敏度的前提下提高分析速度,单次检测时间小于35 s。选用Ni 324.845 7 nm为内标,校正激发行为和进样量误差。方法检出限为0.15 mg/L。按照实验方法测定镍电解液工艺流程中不同中间液中微量铜,结果的相对标准偏差(RSD,n=6)小于12%,加标回收率为98%~110%。  相似文献   

4.
短碘量法连续测定铜、铁含量的方法~([1-4])。通过对反应机理的分析,得出最佳的实验条件和分析方法。利用此方法多次对铜精矿中铜、铁含量进行测定分析。采用加标回收率方法进行铜、铁含量实验验证。该方法所得铜、铁结果的相对标准偏差(n=10)均小于1%,铜加标回收率在98.90%~100.82%,铁加标回收率在98.10%~103.85%。实验结果证明该方法测定铜、铁具有快速、简便、精密度好、准确度高、加标回收率好等特点。适用于同时测定铜精矿中铜、铁的含量。  相似文献   

5.
铜酸比例是影响铜电解正常生产的关键指标,铜酸比例失衡容易加剧浓差极化,提升杂质离子浓度,从而影响阴极铜质量。本文通过现场跟踪考察铜电解过程中不同区域、不同时间下铜离子浓度,硫酸浓度与As~(5+)、Sb~(3+)、Bi~(3+)、Ni~(2+)浓度的变化趋势,以及相应的阴极铜质量,分析铜酸比例对阴极铜质量的影响机理,得出以下结论:铜酸比例失衡会加剧杂质离子富集,促使阴极铜表面结粒,恰当的铜酸比例可改善阴极铜的表观质量;净液量不足会加剧电解液中各种盐类的水解,导致铜酸比例失衡,提高电解液净液量有利于维持正常的铜酸比例;采取强化电解液对流的方式可以提高电解液的传质特性和离子浓度的均匀性,防止电解液铜酸比例失衡;电解液杂质离子较大时,铜酸比例应维持在0.25~0.3范围内。  相似文献   

6.
铜电解液净化脱砷新工艺   总被引:1,自引:0,他引:1  
一、前言铜电解过程中,阳极铜所含的砷约70%进入电解液,呈硫酸砷、亚砷酸和砷酸形态,不断积累,导致电解液电阻增大;同时由于砷与铜的标准电位相近,而易于阴极上析出,影响电铜质量。所以必须严格控制电解液中砷的含量。通常是均衡地更新电解液,用电解法脱除砷。  相似文献   

7.
对某浮选铜精矿进行了焙烧一氰化法提取金、银和铜的工艺方法研究。研究表明,将浮选金精矿(0.074 mm所占比例>90%)于600℃条件下焙烧,产生的SO2用于制酸,焙砂采用5%H2SO4浸取回收铜,酸浸渣先用新型调整剂(NH4HCO3+NaOH)调浸出液pH值≈9.5,以氰化法进行浸出。其金、银和铜的浸出率分别达到98.18%、32.17%和93.6%,经济效益和社会效益显著,为铜精矿的湿法提取工艺提供了一个有效的工艺方法。  相似文献   

8.
针对电位滴定法测定氯电位较不稳定的特点,建立了小剂量异丙醇作为稳定剂,自动电位滴定法测定铜电解液中氯离子含量的方法。确定的实验方法如下:准确移取10.00 mL铜电解液样品于50 mL烧杯中,控制反应温度为20~30 ℃,加入2 mL异丙醇,加水至50 mL左右,将银复合电极和滴头冲洗干净插入待测液中,选择搅拌器转速为625 r/min,用0.010 0 moL/L硝酸银标准溶液进行滴定。干扰试验表明,铜电解液样品中的硫酸和铜基体及其他共存元素对氯离子测定的影响可忽略。将实验方法用于铜电解液实际样品中氯的测定,测得结果与比浊法基本一致,相对标准偏差(RSD,n=5)不小于0.74%,回收率为98%~102%。  相似文献   

9.
采用四酸溶样法处理试样,利用电感耦合等离子体发射光谱(ICP-OES)法直接测定城市污泥中的磷、钾、铬、铜、铅、锌、镍含量,筛选了溶样方法,优化了测试条件。方法检出限分别为100μg/g、500μg/g、15μg/g、1.5μg/g、5.0μg/g、15μg/g、5.0μg/g,精密度(RSD)小于2%,准确度(RE)在3.5%以下,回收率在96%~104%之间,均满足分析测试要求。  相似文献   

10.
如何保证电解液中Cu~(2+)浓度处于生产要求范围一直是铜电解精炼工艺研究的热点和难点,铜电解液的蒸发结晶过程是保证Cu~(2+)浓度的一个关键因素。本文对强磁场循环系统下电解液的蒸发结晶和冷却过程对结晶物质量的影响进行了试验,分析强磁场作用下磁化时间和流速与铜电解液发生共振的内在机理,得出了以下结论:强磁场协同作用于铜电解液时,恒定磁场强度与铜电解液中分子的转动能态会发生共振,并达到极限值,促进电解液的蒸发结晶和冷却;流速越小、磁化时间越长越有利于电解液蒸发结晶和冷却;蒸发结晶的最佳参数为磁场强度3 T、流速0.3 m/s、磁化时间1.5 h,在此条件下,电解液的蒸发率增加14%;冷却的最佳参数为磁场强度3 T、流速0.3 m/s、磁化时间1.5 h,在此条件下,电解液冷却过程的蒸发率增加5%,结晶物质量增加19.73%。磁场强化铜电解液蒸发结晶过程可显著提高电解液净化效率,有助于减轻铜电解过程的浓差极化,促使铜电解液铜酸比例处于动态平衡状态,从而提高阴极铜质量,降低铜电解过程的能耗。  相似文献   

11.
以含H2SO4、As、Sb、Bi的酸性溶液为研究体系,采用化学分析及电化学测试,研究了电解液中锑的氧化还原规律及价态转化途径。实验表明,在铜电解液中,溶解的氧气在一定温度下将Sb(III)氧化,其中砷可显著促进Sb(III)的氧化。通过向电解液中加入适量双氧水可实现电解液中锑的氧化,促进砷锑铋的共沉淀反应。电化学测试表明,加入Sb(III)后,阴极过程在-0.13 V出现还原峰,阳极过程在0.03 V出现氧化峰,随着三价锑浓度增加,阳极过程氧化峰电流先增大再减小。加入Sb(V)后,阴极过程在-0.1 V出现还原峰,阳极过程在0.05 V出现氧化峰,随着五价锑浓度的增加,阳极过程峰电流逐渐增大。采用H2O2氧化方法调节电解液中nSb(III)/nSb(V)至1∶4附近,Sb、Bi在一定条件下脱除率分别达到68.2%和83.7%。  相似文献   

12.
以硝酸溶解样品,采用电感耦合等离子体原子发射光谱(ICP-AES)法测定纯铜中As、Bi、Zn、Sb、Pb、Fe、Sn、Ni等八种微量杂质元素的含量。通过试验选择各元素最佳分析谱线,并对基体干扰及共存元素之间的干扰进行探讨。在选定的实验条件下,方法的检出限为2.0~14.4ng/L,样品加标试验回收率在96%~102%之间。结果表明,用本法测定标准样品中8种元素的含量,测定值与认定值相符,相对标准偏差(RSD)均小于6%。  相似文献   

13.
铜熔炼渣是火法造锍捕金过程中产生的冶炼废渣,建立渣中铅、锌、镍等杂质元素的测定方法对底吹炉熔炼工艺控制极为重要。实验采用硝酸、盐酸、氢氟酸、高氯酸溶解样品,采用电感耦合等离子体原子发射光谱法测定铅、锌、镍、锑、铋、砷,选择Pb 220.353 nm、Zn 213.856 nm、Ni 231.604 nm、Sb 206.833 nm、Bi 190.241 nm、As 193.759 nm作为分析谱线。实验结果表明:当校准曲线的线性范围为0~100 mg/L时,线性相关系数均大于0.999;铅、锌、镍、锑、铋、砷方法检出限分别为0.0027 mg/L、0.0006 mg/L、0.0009 mg/L、0.0084 mg/L、0.0063 mg/L、0.0144 mg/L;测定结果的相对标准偏差为0.15%~4.45%,加标回收率为98.48%~104.44%。该方法准确度和精密度良好,满足实际生产需求。  相似文献   

14.
以硫硝混酸为电解液,控制电解电流为2 A,建立了电解分离-电感耦合等离子体发射光谱法测定纯铜中19种杂质元素(Mg、Bi、Al、P、Ti、Cr、Mn、Fe、Zn、Co、Ni、As、Se、Zr、Cd、Sn、Sb、Te 和 Pb)的方法。结果显示,在最佳实验条件下,大于99%的铜沉积至阴极,各杂质元素的回收率大于90%。研究了电解后电解液的酸效应和残余铜对测定的影响,结果表明,基体效应影响较小,可通过基体匹配来进一步消除其影响。各杂质元素的检出限在0.02~4 mg/kg之间。运用该方法测定纯铜标准物质GBW02141,各元素测定值与认定值吻合。以高纯铜空白样品做加标回收试验,除Bi外,各元素的加标回收率在90%~100%之间,相对标准偏差(RSD,n=5)在0.2%~7.2%之间。  相似文献   

15.
本文介绍了一种光谱定量分析方法。该方法使用BYG01-1氧化铜光谱标准样品,对1-4号纯铜中铋、锑、砷、铁、镍、铅、锡、锌8个杂质元素进行定量分析。分析方法简单,测定结果与化学结果基本相符。方法的测定下限为3×10 ̄(06)。  相似文献   

16.
采用硝酸和盐酸溶解样品, 电感耦合等离子体原子发射光谱法(ICP-AES)测定了废旧线路板中砷、锑、铋、锡、镍、铅、铟、银、镧、铈、钆和钇12种元素。对硝酸和盐酸的用量、分析谱线的选择、基体的影响和仪器参数等进行了研究, 确定了实验的最佳测定条件。通过加标回收试验和采用电感耦合等离子体质谱(ICP-MS)法进行对照分析, 验证了方法的可靠性和准确性。试验表明, 方法适用于废旧线路板中砷、锑、铋、锡、镍、铅、铟、银、镧、铈、钆和钇的测定。方法的检出限(3s)为0.000 9~0.04 μg/mL, 测定样品的相对标准偏差(n=5)在0.58%~4.6%之间, 加标回收率在85%~104%范围。  相似文献   

17.
为解决铜电解液中砷锑铋之间复杂化学反应所引起的砷锑分析误差大的问题,在含砷锑矿石的砷锑连续滴定方法基础上,模拟了铜电解液中砷锑的存在环境,开发出适合于铜电解液砷锑测定的双氧水预处理 连续滴定法。首先采用适量双氧水消除As,Sb对砷锑分析结果的影响,再依次加入硫酸和硫酸肼两次冒浓烟至瓶颈,冷却后于盐酸介质中,以次甲基兰 甲基橙为指示剂,先用硫酸铈标准溶液滴定Sb,再用溴酸钾标准溶液滴定As。实验表明,连续滴定法中,适宜的硫酸加入量为20 mL,发烟时间为5 min,滴定锑时的盐酸浓度为43 mol/L,温度为70 ℃,滴定砷时的盐酸浓度为18 mol/L,温度为80 ℃。采用本方法分析合成铜电解液,砷、锑的回收率分别为96 %和104 %。采用该方法分析铜电解生产线上铜电解液,测得结果与原子吸收光谱法吻合,相对标准偏差(n=6)小于12%。  相似文献   

18.
铜精矿技术条件中要求的组分覆盖范围从主量、常量、微量到痕量,要使用一种检测技术同时测定这些组分是铜精矿测定的难题。单波长激发能量色散X射线荧光光谱仪,采用双曲弯晶全聚焦技术,将X射线连续谱单色化,降低了连续谱背景,改善检出限,提高灵敏度,对组分的检测范围可覆盖主量到痕量。实验基于高灵敏度单波长激发能量色散X射线荧光光谱法(HS-EDXRF)结合快速基本参数法建立了铜精矿中主量组分Cu、S、Fe、SiO2,常量组分CaO、MgO、Al2O3,微量和痕量组分Zn、Ni、Cr、Pb、Sb、Cl、Ag、As、Bi等16种组分的分析方法。采用实验方法测定铜精矿样品,结果与标准方法或经典分析方法结果对比,无显著性差异(t0.05,82值均小于1.98)。此外,主量组分Cu、S、Fe、SiO2测定结果的相对标准偏差(RSD,n=7)不大于0.70%,常量组分CaO、MgO、Al2O3的RSD小于1.6%,微量组分Zn、Ni、Cr、Pb、Sb、Cl的RSD不大于3.3%,痕量组分Ag、As、Bi等的RSD均小于10%。方法可满足铜冶炼工艺对铜精矿中16种组分的检测需求。  相似文献   

19.
铜精矿技术条件中要求的组分覆盖范围从主量、常量、微量到痕量,要使用一种检测技术同时测定这些组分是铜精矿测定的难题。单波长激发能量色散X射线荧光光谱仪,采用双曲弯晶全聚焦技术,将X射线连续谱单色化,降低了连续谱背景,改善检出限,提高灵敏度,对组分的检测范围可覆盖主量到痕量。实验基于高灵敏度单波长激发能量色散X射线荧光光谱法(HS-EDXRF)结合快速基本参数法建立了铜精矿中主量组分Cu、S、Fe、SiO2,常量组分CaO、MgO、Al2O3,微量和痕量组分Zn、Ni、Cr、Pb、Sb、Cl、Ag、As、Bi等16种组分的分析方法。采用实验方法测定铜精矿样品,结果与标准方法或经典分析方法结果对比,无显著性差异(t0.05,82值均小于1.98)。此外,主量组分Cu、S、Fe、SiO2测定结果的相对标准偏差(RSD,n=7)不大于0.70%,常量组分CaO、MgO、Al2O3的RSD小于1.6%,微量组分Zn、Ni、Cr、Pb、Sb、Cl的RSD不大于3.3%,痕量组分Ag、As、Bi等的RSD均小于10%。方法可满足铜冶炼工艺对铜精矿中16种组分的检测需求。  相似文献   

20.
The removal of As, Sb, and Bi impurities from copper electrolyte is a primary objective of copper electrorefineries. The present experimental work demonstrates that the presence of Sb2O3 facilitates efficient and fast removal these impurities (with removal rates of 38.50, 98.50, and 99.00% for As, Sb, and Bi) through the formation of antimonate (AsSbO4/Sb2O4/BiSbO4), which plays a critical role in the self-purification of copper electrolyte. However, the antimonate which is a valuable metallurgical by-product contained high contents of As and Sb. The thermal decomposition of the antimonate was characterized by TG/DTA, a new method was proposed for recovering the target components, As, Sb, Bi, and to regenerate Sb2O3 with a two-stage roasting process under argon atmosphere. According to the results of XRD, SEM-EDS and ICP-MS, AsSbO4 decomposed during the first stage roasting at 800°C over 2 h, affording As with a recovery rate of 98.80%. During the second stage, decomposition of BiSbO4 and Sb2O4 at 1200°C over 2 h resulted in 99.01, 95.14% recovery rates for Sb, Bi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号