首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
高令飞  王海涛  张鸣  朱煜 《工程力学》2012,29(11):365-369
温差造成光刻机激光干涉仪反射镜热变形,从而影响光刻机的精度。该文将基于二次单元的快速边界元法用于激光干涉仪反射镜的大规模温度场模拟。不连续单元的引入可以有效处理角点问题;新型快速多极算法用于边界元法的加速求解。建立统一的二次单元多极展开格式以处理混合边界。数值算例分析了快速多极边界元法的计算精度和效率,并和常规算法比较;使用该算法对激光干涉仪反射镜进行了大规模温度场计算,并和有限元法比较。结果表明:基于二次单元的快速多极边界元法可以高精度求解大规模三维传热问题。  相似文献   

2.
该文将快速多极边界元法用于三维稳态传热问题的大规模数值计算。多极展开的引入使得该算法能够在单台个人电脑上完成30万自由度以上的传热边界元分析。统一展开的基本解能够处理混合边界。广义极小残差法作为快速多极边界元法的迭代求解器,数值算例分析了快速多极边界元法的计算效率。结果表明:快速多极边界元法的求解效率与常规算法相比有数量级的提高;在模拟复杂结构大规模传热问题上将具有良好的应用前景。  相似文献   

3.
雷霆  姚振汉  王海涛 《工程力学》2006,23(11):28-32,57
以三维弹性力学问题为例,对快速多极与常规边界元法机群并行计算进行了比较。其中常规边界元法求解方程采用高斯消去法,通过调用标准并行求解函数库ScaLAPACK实现;快速多极边界元法并行计算程序采用ANSIC++语言、调用MPI并行通信库自行编写。两种程序均运行于同一机群并行环境。数值算例表明,在同样的机群条件下,采用快速多极边界元法可使解题规模有数量级的提高,计算速度明显高于常规边界元法,并行效率也优于常规边界元法。  相似文献   

4.
王建省  杨其伟 《工程力学》1999,1(A01):267-271
基于边界积分方程技术讨论了边界函数未知时的数值估算方法,推导出了均匀各向同性体普遍适用的BIEM公式,给出了积分方程边界值估算法技术的离散格式及数值计算形式,最后分析了矩形及三角形板数值做算例子。  相似文献   

5.
史文谱  魏娟   《振动与冲击》2014,33(20):31-34
利用多极坐标变换、Graf加法公式及波函数展开法研究圆形区域内多圆孔缺陷存在时对圆形域边界作用反平面稳态脉冲SH波散射Green函数解。给出各圆孔对SH波散射产生含未知系数的散射波函数,用叠加原理写出圆形域介质内总波场,据边界条件、Graf加法公式及Fourier积分变换获得确定未知系数的无穷线代数方程组;由计算精度进行有限项截断求解,确定问题的Green函数解。用算例结果验证该方法的可行性。  相似文献   

6.
一、计算原理 描述三维水介质中单频、稳态声场的波动方程有如下形式:式中:φ──速度势,c──水中声速 将波动方程与格林公式结合可推导出关于三维空间中结构体的边界积分方程:式中:C1──与表面形状有关的系数 S──包围结构体的曲面 u=e~jkr/4πr点源函数 u = n/ n;n──S面的内法向 φ= φ/ n 边界积分方程中含有已知和未知的边界值,是计算结构体辐射声场的原始方程。 二、数值方法 采用边界元法计算辐射声场,首先将壳体表面边界离散成数个面单元,可采用四边形或三角形单元。单元内任一点的值可由节点处相应的值来表示,将离散单…  相似文献   

7.
针对传统边界元法奇异性的固有缺陷,研究一种求解结构辐射声场的间接边界元法。通过在内域虚拟曲面上配置一系列单偶极子源,等效模拟结构外辐射声场,并根据单元体积速度匹配法的边界条件方案,给出数值计算辐射声场的间接边界元模型。结合球冠形辐射器的仿真算例,表明该间接边界元法在求解远场声特性时具有较高的计算效率和精度,为分析设计具有大空间指向性的辐射器提供参考。  相似文献   

8.
采用有限元/快速多极边界元法进行水下弹性结构的辐射和散射声场分析。Burton-Miller法用于解决传统单Helmholtz边界积分方程在求解外边界值问题时出现的非唯一解的问题。该文采用GMRES和快速多极算法加速求解系统方程。针对传统快速算法在高频处效率低和对角式快速算法在低频处不稳定这一问题,该文通过结合这两种快速算法形成宽频快速算法来克服。同时该文通过观察不同参数条件设置下,宽频快速多极法得到的数值结果在计算精度和计算时间上的变化,得到最优的参数组合值。最后通过数值算例验证该文算法的正确性和有效性。  相似文献   

9.
本本文给出了三维无限大域内点热源作用下的位移、应力场基本解。采用基于虚拟热源法的间接边界元法和直接边界元法的混合边界元法求解三维有限域热弹性力学问题,有效地避免了热弹性力学问题中域内积分的处理。数值计算表明混合边界元法求热弹性力学问题具有简单方便、精度较高的优点。  相似文献   

10.
基于传递矩阵法、齐次扩容精细积分法和复数矢径虚拟边界谱方法 ,提出了一种求解水下非圆弹性环声散射问题的半解析方法。该方法具有以下几个优点 :(1)采用复数矢径虚拟边界谱方法 ,不仅能保证在全波数域内Helmholtz外问题解的唯一性 ,而且由于虚拟源强密度函数采用 Fourier级数展开 ,克服了用单元离散解法不能用于较高频率范围的缺点 ;(2 )采用齐次扩容精细积分法求解非圆弹性环的状态微分方程 ,其计算结果具有很高的精度 ;(3)耦合方程不需要交错迭代求解 ,提高了计算效率。文中给出了两个典型非圆弹性环在平面声波激励下的声散射算例 ,计算结果表明本文方法是一种求解二维非圆弹性环声散射问题非常有效的半解析法。  相似文献   

11.
In this paper, a semi-analytical approach for the eigenproblem of circular plates with multiple circular holes is presented. Natural frequencies and modes are determined by employing the null-field integral formulation in conjunction with degenerate kernels, tensor rotation and Fourier series. In the proposed approach, all kernel functions are expanded into degenerate (separable) forms and all boundary densities are represented by using Fourier series. By uniformly collocating points on the real boundary and taking finite terms of Fourier series, a linear algebraic system can be constructed. The direct searching approach is adopted to determine the natural frequency through the singular value decomposition (SVD). After determining the unknown Fourier coefficients, the corresponding mode shape is obtained by using the boundary integral equations for domain points. The result of the annular plate, as a special case, is compared with the analytical solution to verify the validity of the present method. For the cases of circular plates with an eccentric hole or multiple circular holes, eigensolutions obtained by the present method are compared well with those of the existing approximate analytical method or finite element method (ABAQUS). Besides, the effect of eccentricity of the hole on the natural frequency and mode is also considered. Moreover, the inherent problem of spurious eigenvalue using the integral formulation is investigated and the SVD updating technique is adopted to suppress the occurrence of spurious eigenvalues. Excellent accuracy, fast rate of convergence and high computational efficiency are the main features of the present method thanks to the semi-analytical procedure.  相似文献   

12.
A fast and accurate algorithm is presented to increase the computational efficiency of a Galerkin boundary integral method for solving two-dimensional elastostatics problems involving numerous straight cracks and circular inhomogeneities. The efficiency is improved by computing the combined influences of groups, or blocks, of elements—with each element being an inclusion, a hole, or a crack—using asymptotic expansions, multiple shifts, and Taylor series expansions. The coefficients in the asymptotic and Taylor series expansions are computed analytically. Implementation of this algorithm involves a single- or multi-level grid, a clustering technique, and a tree data structure. An iterative procedure is adopted to solve the coefficients in the series expansions of boundary unknowns block by block. The elastic fields in each block are calculated by superposition of the direct influences from the nearby elements and the grouped far-field influences from all the other elements. This fast multipole algorithm is considerably more efficient for large-scale practical problems than the conventional approach.  相似文献   

13.
A fast multipole boundary element method (BEM) for solving large-scale thin plate bending problems is presented in this paper. The method is based on the Kirchhoff thin plate bending theory and the biharmonic equation governing the deflection of the plate. First, the direct boundary integral equations and the conventional BEM for thin plate bending problems are reviewed. Second, the complex notation of the kernel functions, expansions and translations in the fast multipole BEM are presented. Finally, a few numerical examples are presented to show the accuracy and efficiency of the fast multipole BEM in solving thin plate bending problems. The bending rigidity of a perforated plate is evaluated using the developed code. It is shown that the fast multipole BEM can be applied to solve plate bending problems with good accuracy. Possible improvements in the efficiency of the method are discussed.  相似文献   

14.
This paper deals with the efficient 3D multidomain boundary element method (BEM) for solving a Poisson equation. The integral boundary equation is discretized using linear mixed boundary elements. Sparse system matrices similar to the finite element method are obtained, using a multidomain approach, also known as the ‘subdomain technique’. Interface boundary conditions between subdomains lead to an overdetermined system matrix, which is solved using a fast iterative linear least square solver. The accuracy, efficiency and robustness of the developed numerical algorithm are presented using cube and sphere geometry, where the comparison with the competitive BEM is performed. The efficiency is demonstrated using a mesh with over 200,000 hexahedral volume elements on a personal computer with 1 GB memory.  相似文献   

15.
Moving least squares approximation (MLSA) has been widely used in the meshless method. The singularity should appear in some special arrangements of nodes, such as the data nodes lie along straight lines and the distances between several nodes and calculation point are almost equal. The local weighted orthogonal basis functions (LWOBF) obtained by the orthogonalization of Gramm–Schmidt are employed to take the place of the general polynomial basis functions in MLSA. In this paper, MLSA with LWOBF is introduced into the virtual boundary meshless least square integral method to construct the shape function of the virtual source functions. The calculation format of virtual boundary meshless least square integral method with MLSA is deduced. The Gauss integration is adopted both on the virtual and real boundary elements. Some numerical examples are calculated by the proposed method. The non-singularity of MLSA with LWOBF is verified. The number of nodes constructing the shape function can be less than the number of LWOBF and the accuracy of numerical result varies little.  相似文献   

16.
Electrical capacitance tomography is a promising visualization technique to image the internal permittivity distribution using boundary capacitance measurements. Because of its advantages of noninvasive, noninstructive, no radiation, and low cost, it has been successfully applied in many industrial processes. Currently, the commonly used algorithms in electrical capacitance tomography are based on the pixel/volume‐wise parameterization of the permittivity. When the permittivity is piecewise constant, it is difficult to enhance the spatial resolution. In the paper, a shape‐based algorithm is presented to directly reconstruct the geometric configuration of the smooth interface between two layered materials. By parameterizing the interface shape using Bézier surface, the unknown shape is iteratively approached using Levenberg–Marquardt method. To improve the computational efficiency, the forward problem is solved using a cornice boundary integral equation, and a fast Jacobian calculation method is derived using the reciprocity theorem and some integral transform technique. The numerical results demonstrate that the presented method has ability to reconstruct the smooth and continuous three‐dimensional interfaces with a good accuracy and high convergence, even when the permittivity values of the reconstructed substances are also unknown. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A diagonal form fast multipole boundary element method (BEM) is presented in this paper for solving 3-D acoustic wave problems based on the Burton-Miller boundary integral equation (BIE) formulation. Analytical expressions of the moments in the diagonal fast multipole BEM are derived for constant elements, which are shown to be more accurate, stable and efficient than those using direct numerical integration. Numerical examples show that using the analytical moments can reduce the CPU time by a lot as compared with that using the direct numerical integration. The percentage of CPU time reduction largely depends on the proportion of the time used for moments calculation to the overall solution time. Several examples are studied to investigate the effectiveness and efficiency of the developed diagonal fast multipole BEM as compared with earlier p3 fast multipole method BEM, including a scattering problem of a dolphin modeled with 404,422 boundary elements and a radiation problem of a train wheel track modeled with 257,972 elements. These realistic, large-scale BEM models clearly demonstrate the effectiveness, efficiency and potential of the developed diagonal form fast multipole BEM for solving large-scale acoustic wave problems.  相似文献   

18.
In this paper, numerical solutions of a hypersingular integral equation for curved cracks in circular regions are presented. The boundary of the circular regions is assumed to be traction free or fixed. The suggested complex potential is composed of two parts, the principle part and the complementary part. The principle part can model the property of a curved crack in an infinite plate. For the case of the traction free boundary, the complementary part can compensate the traction on the circular boundary caused by the principle part. Physically, the proposed idea is similar to the image method in electrostatics. By using the crack opening displacement (COD) as the unknown function and traction as right hand term in the equation, a hypersingular integral equation for the curved crack problems in the circular regions is obtained. The equation is solved by using the curve length coordinate method. In order to prove that the suggested method can be used to solve more complicated cases of the curved cracks, several numerical examples are given.  相似文献   

19.
In this paper, the fast Fourier transform on multipole (FFTM) algorithm is used to accelerate the matrix-vector product in the boundary element method (BEM) for solving Laplace equation. This is implemented in both the direct and indirect formulations of the BEM. A new formulation for handling the double layer kernel using the direct formulation is presented, and this is shown to be related to the method given by Yoshida (Application of fast multipole method to boundary integral equation method, Kyoto University, Japan, 2001). The FFTM algorithm shows different computational performances in direct and indirect formulations. The direct formulation tends to take more computational time due to the evaluation of an extra integral. The error of FFTM in the direct formulation is smaller than that in the indirect formulation because the direct formulation has the advantage of avoiding the calculations of the free term and the strongly singular integral explicitly. The multipole and local translations introduce approximation errors, but these are not significant compared with the discretization error in the direct or indirect BEM formulation. Several numerical examples are presented to compare the computational efficiency of the FFTM algorithm used with the direct and indirect BEM formulations.  相似文献   

20.
A new fast multipole boundary element method (BEM) is presented in this paper for large‐scale analysis of two‐dimensional (2‐D) elastostatic problems based on the direct boundary integral equation (BIE) formulation. In this new formulation, the fundamental solution for 2‐D elasticity is written in a complex form using the two complex potential functions in 2‐D elasticity. In this way, the multipole and local expansions for 2‐D elasticity BIE are directly linked to those for 2‐D potential problems. Furthermore, their translations (moment to moment, moment to local, and local to local) turn out to be exactly the same as those in the 2‐D potential case. This formulation is thus very compact and more efficient than other fast multipole approaches for 2‐D elastostatic problems using Taylor series expansions of the fundamental solution in its original form. Several numerical examples are presented to study the accuracy and efficiency of the developed fast multipole BEM formulation and code. BEM models with more than one million equations have been solved successfully on a laptop computer. These results clearly demonstrate the potential of the developed fast multipole BEM for solving large‐scale 2‐D elastostatic problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号