首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nowadays, the semiconductor manufacturing becomes very complex, consisting of hundreds of individual processes. If a faulty wafer is produced in an early stage but detected at the last moment, unnecessary resource consumption is unavoidable. Measuring every wafer’s quality after each process can save resources, but it is unrealistic and impractical because additional measuring processes put in between each pair of contiguous processes significantly increase the total production time. Metrology, as is employed for product quality monitoring tool today, covers only a small fraction of sampled wafers. Virtual metrology (VM), on the other hand, enables to predict every wafer’s metrology measurements based on production equipment data and preceding metrology results. A well established VM system, therefore, can help improve product quality and reduce production cost and cycle time. In this paper, we develop a VM system for an etching process in semiconductor manufacturing based on various data mining techniques. The experimental results show that our VM system can not only predict the metrology measurement accurately, but also detect possible faulty wafers with a reasonable confidence.  相似文献   

2.
Defective wafer detection is essential to avoid loss of yield due to process abnormalities in semiconductor manufacturing. For most complex processes in semiconductor manufacturing, various sensors are installed on equipment to capture process information and equipment conditions, including pressure, gas flow, temperature, and power. Because defective wafers are rare in current practice, supervised learning methods usually perform poorly as there are not enough defective wafers for fault detection (FD). The existing methods of anomaly detection often rely on linear excursion detection, such as principal component analysis (PCA), k-nearest neighbor (kNN) classifier, or manual inspection of equipment sensor data. However, conventional methods of observing equipment sensor readings directly often cannot identify the critical features or statistics for detection of defective wafers. To bridge the gap between research-based knowledge and semiconductor practice, this paper proposes an anomaly detection method that uses a denoise autoencoder (DAE) to learn a main representation of normal wafers from equipment sensor readings and serve as the one-class classification model. Typically, the maximum reconstruction error (MaxRE) is used as a threshold to differentiate between normal and defective wafers. However, the threshold by MaxRE usually yields a high false positive rate of normal wafers due to the outliers in an imbalanced data set. To resolve this difficulty, the Hampel identifier, a robust method of outlier detection, is adopted to determine a new threshold for detecting defective wafers, called MaxRE without outlier (MaxREwoo). The proposed method is illustrated using an empirical study based on the real data of a wafer fabrication. Based on the experimental results, the proposed DAE shows great promise as a viable solution for on-line FD in semiconductor manufacturing.  相似文献   

3.
The purpose of virtual metrology (VM) in semiconductor manufacturing is to support process monitoring and quality control by predicting the metrological values of every wafer without an actual metrology process, based on process sensor data collected during the operation. Most VM-based quality control schemes assume that the VM predictions are always accurate, which in fact may not be true due to some unexpected variations that can occur during the process. In this paper, therefore, we propose a means of evaluating the reliability level of VM prediction results based on novelty detection techniques, which would allow flexible utilization of the VM results. Our models generate a high-reliability score for a wafer’s VM prediction only when its process sensor values are found to be consistent with those of the majority of wafers that are used in model building; otherwise, a low-reliability score is returned. Thus, process engineers can selectively utilize VM results based on their reliability level. Experimental results show that our reliability generation models are effective; the VM results for wafers with a high level of reliability were found to be much more accurate than those with a low level.  相似文献   

4.
In semiconductor manufacturing, wafer quality control strongly relies on product monitoring and physical metrology. However, the involved metrology operations, generally performed by means of scanning electron microscopes, are particularly cost-intensive and time-consuming. For this reason, in common practice a small subset only of a productive lot is measured at the metrology stations and it is devoted to represent the entire lot. Virtual Metrology (VM) methodologies are used to obtain reliable predictions of metrology results at process time, without actually performing physical measurements. This goal is usually achieved by means of statistical models and by linking process data and context information to target measurements. Since semiconductor manufacturing processes involve a high number of sequential operations, it is reasonable to assume that the quality features of a given wafer (such as layer thickness and critical dimensions) depend on the whole processing and not on the last step before measurement only. In this paper, we investigate the possibilities to enhance VM prediction accuracy by exploiting the knowledge collected in the previous process steps. We present two different schemes of multi-step VM, along with dataset preparation indications. Special emphasis is placed on regression techniques capable of handling high-dimensional input spaces. The proposed multi-step approaches are tested on industrial production data.  相似文献   

5.
Virtual metrology (VM) is the prediction of metrology variables (either measurable or non-measurable) using process state and product information. In the past few years VM has been proposed as a method to augment existing metrology and has the potential to be used in control schemes for improved process control in terms of both accuracy and speed. In this paper, we propose a VM based approach for process control of semiconductor manufacturing processes on a wafer-to-wafer (W2W) basis. VM is realized by utilizing the pre-process metrology data and more importantly the process data from the underlying tools that is generally collected in real-time for fault detection (FD) purposes. The approach is developed for a multi-input multi-output (MIMO) process that may experience metrology delays, consistent process drifts, and sudden shifts in process drifts. The partial least squares (PLS) modeling technique is applied in a novel way to derive a linear regression model for the underlying process, suitable for VM purposes. A recursive moving-window approach is developed to update the VM module whenever metrology data is available. The VM data is then utilized to develop a W2W process control capability using a common run-to-run control technique. The proposed approach is applied to a simulated MIMO process and the results show considerable improvement in wafer quality as compared to other control solutions that only use lot-to-lot metrology information.  相似文献   

6.
This paper develops a new advanced process control (APC) system for the multiple-input multiple-output (MIMO) semiconductor processes using the partial least squares (PLS) technique to provide the run-to-run control with the virtual metrology data, via the gradual mode or the rapid mode depending on the current system status, in order to deal with metrology delays and compensate for different types of system disturbances. First, we present a controller called the PLS-MIMO double exponentially weighted moving average (PLS-MIMO DEWMA) controller. It employs the PLS method as the model building/estimation technique to help the DEWMA controller generate more consistent and robust control outputs than purely using the conventional DEWMA controller. To cope with metrology delays, the proposed APC system uses the pre-processing metrology data to build up the virtual metrology (VM) system that can provide the estimated process outputs for the PLS-MIMO DEWMA controller. Lastly, the Fault Detection (FD) system is added based upon the principal components of the PLS modeling outcomes, which supplies the process status for the VM mechanism and the PLS-MIMO DEWMA controller as to how the process faults are responded. Two scenarios of the simulation study are conducted to illustrate the APC system proposed in this paper.  相似文献   

7.
Plasma etch is a semiconductor manufacturing process during which material is removed from the surface of semiconducting wafers, typically made of silicon, using gases in plasma form. A host of chemical and electrical complexities make the etch process notoriously difficult to model and troublesome to control. This work demonstrates the use of a real-time model predictive control scheme to control plasma electron density and plasma etch rate in the presence of disturbances to the ground path of the chamber. Virtual metrology (VM) models, using plasma impedance measurements, are used to estimate the plasma electron density and plasma etch rate in real time for control, eliminating the requirement for invasive measurements. The virtual metrology and control schemes exhibit fast set-point tracking and disturbance rejection capabilities. Etch rate can be controlled to within 1% of the desired value. Such control represents a significant improvement over open-loop operation of etch tools, where variances in etch rate of up to 5% can be observed during production processes due to disturbances in tool state and material properties.  相似文献   

8.
Optical inspection techniques have been widely used in industry as they are non-destructive. Since defect patterns are rooted from the manufacturing processes in semiconductor industry, efficient and effective defect detection and pattern recognition algorithms are in great demand to find out closely related causes. Modifying the manufacturing processes can eliminate defects, and thus to improve the yield. Defect patterns such as rings, semicircles, scratches, and clusters are the most common defects in the semiconductor industry. Conventional methods cannot identify two scale-variant or shift-variant or rotation-variant defect patterns, which in fact belong to the same failure causes. To address these problems, a new approach is proposed in this paper to detect these defect patterns in noisy images. First, a novel scheme is developed to simulate datasets of these 4 patterns for classifiers’ training and testing. Second, for real optical images, a series of image processing operations have been applied in the detection stage of our method. In the identification stage, defects are resized and then identified by the trained support vector machine. Adaptive resonance theory network 1 is also implemented for comparisons. Classification results of both simulated data and real noisy raw data show the effectiveness of our method.  相似文献   

9.
半导体生产过程是典型的间歇过程,针对其过程数据的多模态、多阶段、模态结构不同和批次不等长等特点,提出了基于统计模量的局部近邻标准化和k近邻相结合的故障检测方法(SP-LNS-kNN)。首先计算样本的统计模量,其次对样本的统计模量使用其局部K近邻集进行标准化,最后计算样本与其前k近邻距离,得到平均累积距离D作为检测指标,进而对工业过程故障进行在线检测。统计模量保留了数据的主要信息,将二维样本数据简化为一维数据。局部近邻标准化可以有效降低中心漂移、模态结构差异明显的影响。SP-LNS-kNN不仅能够对大故障实现检测,并且能够提高对小模态的微弱故障的检测能力。使用SP-LNS-kNN对一个实际半导体生产过程数据进行故障检测实验,并将实验结果与PCA、kPCA、LOF和FD-kNN方法的结果进行对比分析,验证了本文方法的有效性。  相似文献   

10.
Virtual machines (VM) offer simple and practical mechanisms to address many of the manageability problems of leveraging heterogeneous computing resources. VM live migration is an important feature of virtualization in cloud computing: it allows administrators to transparently tune the performance of the computing infrastructure. However, VM live migration may open the door to security threats. Classic anomaly detection schemes such as Local Outlier Factors (LOF) fail in detecting anomalies in the process of VM live migration. To tackle such critical security issues, we propose an adaptive scheme that mines data from the cloud infrastructure in order to detect abnormal statistics when VMs are migrated to new hosts. In our scheme, we extend classic Local Outlier Factors (LOF) approach by defining novel dimension reasoning (DR) rules as DR-LOF to figure out the possible sources of anomalies. We also incorporate Symbolic Aggregate ApproXimation (SAX) to enable timing information exploration that LOF ignores. In addition, we implement our scheme with an adaptive procedure to reduce chances of performance instability. Compared with LOF that fails in detecting anomalies in the process of VM live migration, our scheme is able not only to detect anomalies but also to identify their possible sources, giving cloud computing operators important clues to pinpoint and clear the anomalies. Our scheme further outperforms other classic clustering tools in WEKA (Waikato Environment for Knowledge Analysis) with higher detection rates and lower false alarm rate. Our scheme would serve as a novel anomaly detection tool to improve security framework in VM management for cloud computing.  相似文献   

11.
This article outlines the formulation of a robust fault detection and isolation (FDI) scheme that can precisely detect and isolate simultaneous actuator and sensor faults for uncertain linear stochastic systems. The given robust fault detection scheme based on the discontinuous robust observer approach would be able to distinguish between model uncertainties and actuator failures and therefore eliminate the problem of false alarms. Since the proposed approach involves estimating sensor faults, it can also be used for sensor fault identification and the reconstruction of true outputs from faulty sensor outputs. Simulation results presented here validate the effectiveness of the proposed robust FDI system.  相似文献   

12.
针对现阶段大部分卫星导航接收机跟踪阶段的欺骗检测方法只能检测单欺骗源发射的欺骗信号的问题,提出一种基于载波跟踪环路统计特性分析的欺骗检测方法。首先分析了跟踪阶段已有欺骗检测方法的不足;其次,建立了接收机正常接收信号模型和欺骗信号入侵后接收信号模型,对真实信号与欺骗信号的复合信号的统计规律进行了分析。理论分析表明,当欺骗信号与真实信号存在频差时,检测算法能够通过I路信号的幅度变化检测出欺骗信号。仿真结果表明,在接收机能接收到的正常载噪比范围内(28 dB·Hz~50 dB·Hz),在2%的虚警概率下能够达到100%的检测概率。算法能够检测多欺骗源发射的欺骗信号,且检测性能比已有方法得到了提升(在载噪比相同的情况下,检测性能提升约1 dB;在干信比相同的情况下,检测性能提升约4 dB)。  相似文献   

13.
Detection of anomalies is a broad field of study, which is applied in different areas such as data monitoring, navigation, and pattern recognition. In this paper we propose two measures to detect anomalous behaviors in an ensemble of classifiers by monitoring their decisions; one based on Mahalanobis distance and another based on information theory. These approaches are useful when an ensemble of classifiers is used and a decision is made by ordinary classifier fusion methods, while each classifier is devoted to monitor part of the environment. Upon detection of anomalous classifiers we propose a strategy that attempts to minimize adverse effects of faulty classifiers by excluding them from the ensemble. We applied this method to an artificial dataset and sensor-based human activity datasets, with different sensor configurations and two types of noise (additive and rotational on inertial sensors). We compared our method with two other well-known approaches, generalized likelihood ratio (GLR) and One-Class Support Vector Machine (OCSVM), which detect anomalies at data/feature level.  相似文献   

14.
Dataset size continues to increase and data are being collected from numerous applications. Because collecting labeled data is expensive and time consuming, the amount of unlabeled data is increasing. Semi-supervised learning (SSL) has been proposed to improve conventional supervised learning methods by training from both unlabeled and labeled data. In contrast to classification problems, the estimation of labels for unlabeled data presents added uncertainty for regression problems. In this paper, a semi-supervised support vector regression (SS-SVR) method based on self-training is proposed. The proposed method addresses the uncertainty of the estimated labels for unlabeled data. To measure labeling uncertainty, the label distribution of the unlabeled data is estimated with two probabilistic local reconstruction (PLR) models. Then, the training data are generated by oversampling from the unlabeled data and their estimated label distribution. The sampling rate is different based on uncertainty. Finally, expected margin-based pattern selection (EMPS) is employed to reduce training complexity. We verify the proposed method with 30 regression datasets and a real-world problem: virtual metrology (VM) in semiconductor manufacturing. The experiment results show that the proposed method improves the accuracy by 8% compared with conventional supervised SVR, and the training time for the proposed method is 20% shorter than that of the benchmark methods.  相似文献   

15.
A new prior-to-run bottleneck detection method based on orthogonal experiment (BD–OE) is proposed for job shop from the perspective of scheduling. It is built according to a new bottleneck definition which is proposed based on the principle of “Bottlenecks determine the performance of manufacturing systems” in TOC. The method takes the scheduling objective as estimated index, and constructs orthogonal trials by orthogonal array and dispatching rules to detect the bottleneck machine which has the greatest effect on the estimated index. It can detect the bottleneck machine before manufacturing systems run, and guide the following production process for the improvement of the performance of manufacturing systems. In order to evaluate the performance of the proposed method, different scales of job shop scheduling instances and two existing bottleneck detection methods are selected for simulation. The results show that the prior-to-run bottleneck detection method is feasible, efficient and easily implemented.  相似文献   

16.
Development of intelligent systems with the pursuit of detecting abnormal events in real world and in real time is challenging due to difficult environmental conditions, hardware limitations, and computational algorithmic restrictions. As a result, degradation of detection performance in dynamically changing environments is often encountered. However, in the next‐generation factories, an anomaly detection system based on acoustic signals is especially required to quickly detect and interfere with the abnormal events during the industrial processes due to the increased cost of complex equipment and facilities. In this study we propose a real time Acoustic Anomaly Detection (AAD) system with the use of sequence‐to‐sequence Autoencoder (AE) models in the industrial environments. The proposed processing pipeline makes use of the audio features extracted from the streaming audio signal captured by a single‐channel microphone. The reconstruction error generated by the AE model is calculated to measure the degree of abnormality of the sound event. The performance of Convolutional Long Short‐Term Memory AE (Conv‐LSTMAE) is evaluated and compared with sequential Convolutional AE (CAE) using sounds captured from various industrial manufacturing processes. In the experiments conducted with the real time AAD system, it is shown that the Conv‐LSTMAE‐based AAD demonstrates better detection performance than CAE model‐based AAD under different signal‐to‐noise ratio conditions of sound events such as explosion, fire and glass breaking.  相似文献   

17.
The semiconductor industry has started the technology transition from 200 mm to 300 mm wafers to improve manufacturing efficiency and reduce manufacturing cost. These technological changes present a unique opportunity to optimally design the process control systems for the next generation fabs. In this paper we first propose a hierarchical fab-wide control framework with the integration of 300 mm equipment and metrology tools and highly automated material handling system. Relevant existing run-to-run technology is reviewed and analyzed in the fab-wide control context. Process and metrology data monitoring are discussed with an example. Missing components are pointed out as opportunities for future research and development. Concluding remarks are given at the end of the paper.  相似文献   

18.
A hybrid machine learning approach to network anomaly detection   总被引:3,自引:0,他引:3  
Zero-day cyber attacks such as worms and spy-ware are becoming increasingly widespread and dangerous. The existing signature-based intrusion detection mechanisms are often not sufficient in detecting these types of attacks. As a result, anomaly intrusion detection methods have been developed to cope with such attacks. Among the variety of anomaly detection approaches, the Support Vector Machine (SVM) is known to be one of the best machine learning algorithms to classify abnormal behaviors. The soft-margin SVM is one of the well-known basic SVM methods using supervised learning. However, it is not appropriate to use the soft-margin SVM method for detecting novel attacks in Internet traffic since it requires pre-acquired learning information for supervised learning procedure. Such pre-acquired learning information is divided into normal and attack traffic with labels separately. Furthermore, we apply the one-class SVM approach using unsupervised learning for detecting anomalies. This means one-class SVM does not require the labeled information. However, there is downside to using one-class SVM: it is difficult to use the one-class SVM in the real world, due to its high false positive rate. In this paper, we propose a new SVM approach, named Enhanced SVM, which combines these two methods in order to provide unsupervised learning and low false alarm capability, similar to that of a supervised SVM approach.We use the following additional techniques to improve the performance of the proposed approach (referred to as Anomaly Detector using Enhanced SVM): First, we create a profile of normal packets using Self-Organized Feature Map (SOFM), for SVM learning without pre-existing knowledge. Second, we use a packet filtering scheme based on Passive TCP/IP Fingerprinting (PTF), in order to reject incomplete network traffic that either violates the TCP/IP standard or generation policy inside of well-known platforms. Third, a feature selection technique using a Genetic Algorithm (GA) is used for extracting optimized information from raw internet packets. Fourth, we use the flow of packets based on temporal relationships during data preprocessing, for considering the temporal relationships among the inputs used in SVM learning. Lastly, we demonstrate the effectiveness of the Enhanced SVM approach using the above-mentioned techniques, such as SOFM, PTF, and GA on MIT Lincoln Lab datasets, and a live dataset captured from a real network. The experimental results are verified by m-fold cross validation, and the proposed approach is compared with real world Network Intrusion Detection Systems (NIDS).  相似文献   

19.
在复杂的半导体制造过程中,晶圆生产经过薄膜沉积、蚀刻、抛光等多项复杂的工序,制造过程中的异常波动都可能导致晶圆缺陷产生.晶圆表面的缺陷模式通常反映了半导体制造过程的各种异常问题,生产线上通过探测和识别晶圆表面缺陷,可及时判断制造过程故障源并进行在线调整,降低晶圆成品率损失.本文提出了基于一种流形学习算法与高斯混合模型动态集成的晶圆表面缺陷在线探测与识别模型.首先该模型开发了一种新型流形学习算法——局部与非局部线性判别分析法(Local and nonlocal linear discriminant analysis, LNLDA),通过融合数据局部/非局部信息以及局部/非局部惩罚信息,有效地提取高维晶圆特征数据的内在流形结构信息,以最大化数据不同簇样本的低维映射距离,保持特征数据中相同簇的低维几何结构.针对线上晶圆缺陷产生的随机性和复杂性,该模型对每种晶圆缺陷模式构建相应的高斯混合模型(Gaussian mixture model, GMM),提出了基于高斯混合模型动态集成的晶圆缺陷在线探测与识别方法.本文提出的模型成功地应用到实际半导体制造过程的晶圆表面缺陷在线探测与识别,在WM-811K晶圆数据库的实验结果验证了该模型的有效性与实用性.  相似文献   

20.
This paper proposes a fused lasso model to identify significant features in the spectroscopic signals obtained from a semiconductor manufacturing process, and to construct a reliable virtual metrology (VM) model. Analysis of spectroscopic signals involves combinations of multiple samples collected over time, each with a vast number of highly correlated features. This leads to enormous amounts of data, which is a challenge even for modern-day computers to handle. To simplify such complex spectroscopic signals, dimension reduction is critical. The fused lasso is a regularized regression method that performs automatic variable selection for the predictive modeling of highly correlated datasets such as those of spectroscopic signals. Furthermore, the fused lasso is especially useful for analyzing high-dimensional data in which the features exhibit a natural order, as is the case in spectroscopic signals. In this paper, we conducted an experimental study to demonstrate the usefulness of a fused lasso-based VM model and compared it with other VM models based on the lasso and elastic-net models. The results showed that the VM model constructed with features selected by the fused lasso algorithm yields more accurate and robust predictions than the lasso- and elastic net-based VM models. To the best of our knowledge, ours is the first attempt to apply a fused lasso to VM modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号