首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   3篇
综合类   1篇
化学工业   19篇
金属工艺   1篇
机械仪表   5篇
建筑科学   3篇
能源动力   8篇
轻工业   5篇
水利工程   2篇
石油天然气   4篇
无线电   3篇
一般工业技术   16篇
冶金工业   2篇
自动化技术   20篇
  2022年   2篇
  2021年   8篇
  2020年   5篇
  2019年   5篇
  2018年   15篇
  2017年   6篇
  2016年   10篇
  2015年   3篇
  2014年   7篇
  2013年   8篇
  2012年   5篇
  2011年   7篇
  2009年   2篇
  2008年   4篇
  2005年   2篇
排序方式: 共有89条查询结果,搜索用时 46 毫秒
1.
This research investigates a numerical simulation of swirling turbulent non-premixed combustion. The effects on the combustion characteristics are examined with three turbulence models: namely as the Reynolds stress model, spectral turbulence analysis and Re-Normalization Group. In addition, the P-1 and discrete ordinate (DO) models are used to simulate the radiative heat transfer in this model. The governing equations associated with the required boundary conditions are solved using the numerical model. The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities. Among different models proposed in this research, the Reynolds stress model with the Probability Density Function (PDF) approach is more accurate (nearly up to 50%) than other turbulent models for a swirling flow field. Regarding the effect of radiative heat transfer model, it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior. This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion.  相似文献   
2.
Weak phase separation and vulnerable linking groups between aromatic units are common setbacks of sulfonated aromatic proton exchange membranes (PEMs) from durability point of view. In this study, sulfonated poly(ether ether ketone) (SPEEK) membranes were exposed to Fenton's solution for a specific time, ranging from 10 to 60 minutes. Chemical structure and morphology evolution, decay in mechanical and thermal stability, and H2 permeability of SPEEK membranes were evaluated during the chemical degradation. Less-entangled polymeric chains with lower average molecular weight of degraded SPEEK samples diminished mechanical rigidity. In addition, reduction of aromatic rings in each repeat unit led to higher thermal decomposition rate. Furthermore, randomly distributed micro-defects in the SPEEK morphology and an increase in water sorption can reduce the fatigue strength of membranes in the wet-dry cycles. Eventually, hydrogen cross-over rate was gradually increased, and henceforth, accelerated destructive radical formation and degradation can be predicted.  相似文献   
3.
The importance of crude oil in the world economy has made it imperative for efficient models to be designed for predicting future prices. This paper proposes an alternative approach based on a time series and biogeography-based optimization (BMMR–BBO) for the estimation of the West Texas Intermediate (WTI) crude oil price. To evaluate the forecasting ability of the presented model, we compared its performance with those of time series functions. The results of the experiment showed that BMMR-BBO performed better than the other methods and is a fairly good option for crude oil price prediction. The proposed model can be useful in the formulation of policies related to international crude oil price estimations, development plans, and industrial production.  相似文献   
4.
Nanofluids have been known as practical materials to ameliorate heat transfer within diverse industrial systems. The current work presents an empirical study on forced convection effects of Al2O3–water nanofluid within an annulus tube. A laminar flow regime has been considered to perform the experiment in high Reynolds number range using several concentrations of nanofluid. Also, the boundary conditions include a constant uniform heat flux applied on the outer shell and an adiabatic condition to the inner tube. Nanofluid particle is visualized with transmission electron microscopy to figure out the nanofluid particles. Additionally, the pressure drop is obtained by measuring the inlet and outlet pressure with respect to the ambient condition. The experimental results showed that adding nanoparticles to the base fluid will increase the heat transfer coefficient (HTC) and average Nusselt number. In addition, by increasing viscosity effects at maximum Reynolds number of 1140 and increasing nanofluid concentration from 1% to 4% (maximum performance at 4%), HTC increases by 18%.  相似文献   
5.
A series of heterogeneous catalysts including different molar ratios of CaO/talc was synthesized to study the transesterification reaction of canola oil and methanol under different reaction conditions. Characterization and kinetic results revealed that the activity of this catalyst was enhanced due to the increase of CaO/talc molar ratio value leading to an improvement in the biodiesel production. Moreover, the effect of various parameters on the activity of the undertaken catalysts was studied in order to determine the optimum process conditions. Leaching measurements and the durability of the CaO/talc catalyst under several reaction cycles were evaluated and proved it to be a stable catalyst.  相似文献   
6.
Polyethylene terephthalate (PET) nanocomposite films were prepared by cast extrusion followed by uniaxial stretching, using chill rolls. Transmission electron microscopy (TEM) and wide angle X‐ray diffraction (WAXD) showed that the clay layers were aligned in the machine direction (MD) in the PET/clay nanocomposite (PCN) films. Differential scanning calorimetry (DSC) showed that PCN films have higher crystallinity than the neat PET films, possibly due to the nucleating role of the silicate layers. The PCN films became hazier as the clay content increased, but the film transparency remained in the acceptable range. Oxygen permeability of the PCN films decreased by 23% compared to the neat PET film. This is comparable with predictions of models proposed in the literature. Silicate incorporation brought about 20% increase in the tensile modulus, while the puncture and tear propagation resistance were reduced, due to brittleness of the PCN films. The measured modulus (1.7 GPa) was somewhat smaller than the values predicted using the Pseudoinclusion model (2.1 GPa). POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   
7.
In the present paper, the unsteady, viscous, incompressible and 2-D flow around two side-by-side circular cylinders was simulated using a Cartesian-staggered grid finite volume based method. A great-source term technique was employed to identify the solid bodies (cylinders) located in the flow field and boundary conditions were enforced by applying the ghost-cell technique. Finally, the characteristics of the flow around two side-by-side cylinders were comprehensively obtained through several computational simulations. The computational simulations were performed for different transverse gap ratios (1.5≤T/D≤4) in laminar (Re=100,200) and turbulent (Re=104) regimes, where T and D are the distance between the centers of cylinders and the diameter of cylinders, respectively. The Reynolds number is based on the diameter of cylinders,D. The pressure field and vorticity distributions along with the associated streamlines and the time histories of hydrodynamic forces were also calculated and analyzed for different gap ratios. Generally, different flow patterns were observed as the gap ratio and Reynolds number varied. Accordingly, the hydrodynamic forces showed irregular variations for small gaps while they took a regular pattern at higher spacing ratios.  相似文献   
8.
Metallurgical and Materials Transactions A - Effect of B4C/SiC particles content on the microstructure, deformation, and electrochemical behavior of aluminum-based hybrid composite processed by...  相似文献   
9.
In this study, aminopropyl trimethoxysilane as an interfacial modifier was introduced on the surface of graphene (Gr) nanoplatelets. The effects of the silane-modified graphene (SGr) loading (0, 0.05, 0.1, 0.3, and 0.5 wt %) and silane modification on the tensile, compressive, interlaminar shear stress (ILSS), and tribological properties of the epoxy-based nanocomposites were investigated. Out of these specimens, the highest values of ILSS and compressive strength were related to the 0.3 wt % SGr–epoxy nanocomposite. The addition of SGr enhanced the tensile strength and strain to failure only at low contents (i.e., 0.05 wt %). Also, the tensile and compressive moduli were improved, and the highest values were observed at a 0.5 wt % SGr loading. In addition, decreases of approximately 40 and 68% in the coefficient of friction and wear rate, respectively, were observed at a 0.3 wt % SGr loading. Enhanced tensile, compressive, ILSS, and wear properties in the SGr–epoxy specimens were observed compared to those in the Gr–epoxy specimens. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47410.  相似文献   
10.
We propose a model-based inversion method to size long surface-breaking cracks in ferrous metals using alternative current field measurement (ACFM) data at an arbitrary liftoff distance. This method employs conjugate gradients optimization to invert measured surface ACFM signal to crack depth. To alleviate the adverse effect of sensor liftoff uncertainty on crack sizing, we propose a blind de-convolution algorithm for reconstructing respective surface ACFM crack signal. In this algorithm, the partially known filter function associated with the sensor liftoff is estimated from which the surface crack signal can be restored. The validity of the proposed inversion method is demonstrated by comparing the actual and predicted depths of several simulated and machine-made long cracks in mild steel test blocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号