首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and magnetic properties of CeMn2−xCoxGe2 (0.0≤x≤1.0) were studied by X-ray powder diffraction and magnetization measurements. All compounds crystallize in the ThCr2Si2-type structure with space group I4/mmm. Substitution of Co for Mn leads to a linear decrease in the lattice constants and the unit cell volume. Increasing substitution of Co for Mn shows a depression of ferromagnetic ordering.  相似文献   

2.
The structure and magnetic properties of Nd1−xYxMn2Ge2 (0.0≤x≤0.6) were studied by X-ray powder diffraction and magnetization measurements. All compounds crystallize in the ThCr2Si2-type structure with space group I4/mmm. Substitution of Y for Mn led to a linear decrease in the lattice constants and the unit cell volume. Increasing substitution of Y for Nd in NdMn2Ge2 shows a depression of ferromagnetic ordering and the gradual development of antiferromagnetic ordering.  相似文献   

3.
The magnetic properties of DyFe10−xNixSi2 compounds with x = 0, 1, 2, 3, 4, 6, 9 and 10 have been investigated by means of X-ray diffraction and magnetic measurements. Substitution of Ni for Fe leads to a decrease in the lattice constants a, c and the unit-cell volume V. The Curie temperature reaches a maximum of 590 K at x = 2, then decreases strongly for x ≥ 2. The spin reorientations are observed for the compounds with x = 0, 1, 2 and 3. The spin reorientation temperature decreases strongly from 255 to 60 K as the Ni content is increased from x = 0 to 3. Below the spin reorientation temperature, the compounds exhibit ferrimagnetic ordering. For the Ni-rich compounds with x = 9 and 10, the magnetization of the Dy sublattice decreases strongly since the magnetization of the Dy sublattice is strongly affected by the molecular field produced by the 3d sublattice.  相似文献   

4.
The HfFe6Ge6-type RMn6Sn6−xXx′ solid solutions (R=Tb, Dy, X′=Ga, In; x≤1.4) have been studied by powder magnetization measurements. All the series are characterized by ferrimagnetic ordering and by a decrease in Curie temperatures with the substitution (ΔTcx≈−39 K for X′=Ga and ΔTcx≈−75 K for X′=In). The RMn6Sn6−xGax systems are characterized by a strong decrease in the spin reorientation temperature with substitution (ΔTtx≈−191 K and −78 K for R=Tb and Dy, respectively) while this transition almost does not change in systems containing indium. The coercive fields drastically decrease with the substitution in the TbMn6Sn6−xGax system while the substitution of In for Sn has a weaker effect. The coercive fields of the Dy compounds do not vary greatly with the substitution in both series. The behaviour of the TbMn6Sn6−xGax is compared with the evolutions observed in the TmMn6Sn6−xGax series. This comparison strongly suggests that the replacement of Sn by Ga changes the sign of the A02 crystal field parameter.  相似文献   

5.
The effects of Mn partial substitution for Fe in TbFe10.5Mo1.5 on the structure and magnetic properties were investigated. TbFe10.5−xMnxMo1.5 samples (x = 1.5, 2.0, 3.0, 4.0, 5.0) were prepared by means of arc-melting and subsequent vacuum annealing. The structure and magnetic properties of TbFe10.5−xMnxMo1.5 compounds were investigated by X-ray powder diffraction and magnetic properties measurements. The following conclusions were obtained: all the TbFe10.5−xMnxMo1.5 compounds studied crystallize in the ThMn12-type structure; the unit-cell volume increases monotonically with increasing Mn concentration; a compensation temperature was observed in the magnetization-temperature curve of TbFe7.5Mn3Mo1.5 compounds. With increasing Mn concentration, the saturation magnetization at 4.4 K decreases to zero, and then increases again, the magnetic moments of the transition-metal sublattice of TbFe10.5−xMnxMo1.5 compounds decrease monotonically.  相似文献   

6.
Spinel LiGaxMn2−xO4 (0 ≤ x ≤ 0.05) cathode materials with phase-pure particles and nano-sized distribution were synthesized by sol–gel method using triethanolamine as the chelating agent. The effects of heat treatment on the physicochemical properties of the spinel LiGaxMn2−xO4 powders were examined with thermogravimetric and differential thermal analysis (TG/DTA), powder X-ray diffraction (XRD) and scanning electron micrograph (SEM). The LiGaxMn2−xO4 (0 ≤ x ≤ 0.05) electrodes were characterized electrochemically by charge/discharge experiments under a current rate of 0.5C at 55 °C. Although the Ga-doped spinel electrode showed smaller initial discharge capacity, it exhibited better cycling performance than the undoped-LiMn2O4 electrode. The dQ/dV versus potential plots at 55 °C revealed that the improvement in cycling performance of the Ga-doped spinel electrode is attributed to stabilization of the spinel structure by the presence of gallium ion.  相似文献   

7.
The superconducting YBa2Cu3O7−x samples were prepared by an Arc-Cast-Annealing (ACA) and Arc-Quench-Powder-Growth (AQPG) processes as modifications of QMG and MPMG techniques. Pe'lets of YBa7Cu3O7−x were quenched by arc-casting in a water cooled copper mould and then the solidified rods were annealed at different temperatures and times to store the superconductivity. Annealed at an appropriate temperature the cast rods showed rising superconducting properties with increasing the annealing time. Some of the rods after solidification were crushed to give powder which was compacted and then subjected to a melt growth process. As a result of this processing, large grained textured YBCO superconductors with dispersed 211 inclusions in the superconducting grains were produced. The microstructure and physical properties of these ACA and AQPG samples were investigated when subject to various temperature cycles. It was found that the volume fraction and size distribution of the second phase inclusions were dependent upon the maximum temperature during the melt growth process. The critical current density (Jc) for ACA and AQPG samples was estimated from magnetization loops using Bean's critical state model. It was found that the value of Jc of AQPG sample was much higher than that of ACA sample.  相似文献   

8.
A series of LaxCeyO1 − x − y films (x = 0–0.54, y = 0–0.58) with thickness of 35–45 nm was deposited by unbalanced magnetron sputtering. High-resolution transmission electron microscope observation shows that La0.24Ce0.34O0.42 film has polycrystalline structure. La2O3 and CeO2 are formed within the LaxCeyO1 − x − y films confirmed by the X-ray diffraction and X-ray photoelectron microscopy. The friction coefficient and residual compressive stress of five kinds of three-element compound films exhibit symmetric distribution with the relative equilibrium of La and Ce atomic concentration within the films. The critical load of all deposited films is between 28 and 33 mN. The friction coefficient of two kinds of rare earth complex oxide films is in the range of 0.08–0.09, which is lower than that of only one kind of rare earth oxide films, and the friction mechanism is discussed.  相似文献   

9.
A series of the Chevrel phases, Mo6−xRuxTe8 and Mo6Te8−xSx (x=0, 1, 2), has been prepared and the various physical properties, such as the elastic modulus, Debye temperature, and electrical resistivity, have been evaluated. The relationships between several properties of the compounds have also been studied. Young’s modulus and Debye temperature of Mo6−xRuxTe8 and Mo6Te8−xSx increase with increasing x value. The relationship between the Vickers hardness and Young’s modulus shows ceramic characteristics for Mo6−xRuxTe8, while they show glass-like characteristics for Mo6Te8−xSx. The electrical resistivities of Mo6−xRuxTe8 and Mo6Te8−xSx increase with increasing x value.  相似文献   

10.
The structure and magnetic properties of the Pr1−xGdxMn2Ge2 (0.0≤x≤1.0) compounds have been investigated by means of X-ray diffraction (XRD), differential scanning calorimetry (DSC) techniques and AC magnetic susceptibility measurements. All compounds crystallize in the ThCr2Si2-type structure with the space group I4/mmm. The lattice constants and the unit cell volume obey Vegard’s law. Samples in this alloy system exhibit a crossover from ferromagnetic ordering for PrMn2Ge2 to antiferromagnetic ordering for GdMn2Ge2 as a function of Gd concentration x. At low temperatures, the rare earth sublattice also orders and reconfigures the ordering in the Mn sublattice. The results are summarized in the xT magnetic phase diagram.  相似文献   

11.
Hg(BrxI1−x)2 crystals were grown by the Bridgman method for 0.2 < x < 1.0. They were tested for potential implementation as X- and γ-ray detectors at room temperature. 241Am and 55Fe were used as radioactive sources. From the corresponding energy spectra, it is evident that crystals with x = 0.2 show enhanced resolution at low energies (below 200 keV), competing those fabricated from HgI2 and CdTe. Crystals with higher x's were of lower resolution.  相似文献   

12.
The ferroelectric perovskite type lanthanum doped lead titanate (PLT) ceramic powders were synthesized in one step with the starting materials of PbC2O4, La2O3 and TiO2 in NaCl–KCl molten salts in the temperature range of 700–950 °C. It was found that molten salt method was a large scale and easy preparation way to produce PLT powders with high dispersity. Tetragonal phase Pb1−xLaxTiO3 ceramic powders were identified by XRD in the composition range 0 ≤ x ≤ 0.3 and mono-dispersed particles with spheric shape and less than 100 nm size were observed by SEM. The grain sizes of Pb1−xLaxTiO3 ceramic powders increased with the increase of La content and decreased with calcination temperature. The grain growth progress and the possible reaction mechanism in molten salts and its influencing factors were discussed in this work. The grain growth process was the main influencing factor of the grain size, which depended on the solubility in the flux.  相似文献   

13.
The Li0.33La0.55TiO3 solid electrolyte has a maximum grain ionic conductivity of 1.13 × 10−3 S cm−1 among the Li3xLa2/3−xTiO3 oxides (0.21 ≤ 3x ≤ 0.50), but the total ionic conductivity of its polycrystalline phase is not the highest. Owing to the grain-boundary resistances controlling the total resistances of bulk samples, an excellent solid electrolyte is mainly characterized by the grain-boundary resistances. With regard to the role of lithium ions, the substitution of La3+ ions by the Li+ ions weakens the strength of inter-ionic forces, leading to the decrease in the sintering temperature. The presence of La3+/Li+-site vacancies promotes the densification and grain growth and further results in rapid decreases in porosity and grain-boundary resistances. Li0.21La0.60TiO3 with a larger amount of La3+/Li+-site vacancies can therefore exhibit the highest total ionic conductivity through rapidly decreasing its grain-boundary resistances by changing its microstructure, and it becomes a better polycrystalline solid electrolyte than Li0.33La0.55TiO3 in the Li3xLa2/3−xTiO3 system studied, in spite of its lower grain ionic conductivity.  相似文献   

14.
Measurements of magnetic properties, X-ray diffraction and magnetostriction were made on Tb0.27Dy0.73(Fe1 − xAlx)2 (x = 0.1, 0.2, …, 0.7) compounds. It was found that the system has the cubic MgCu2 structure over almost the whole (Fe,Al) concentration range investigated, except for a narrow intermediate range (x = 0.4–0.6) where the hexagonal MgZn2 structure appears. With increasing Al content x, the lattice constant a increases linearly with x. The first replacement of Fe results in a marked decrease in the Curie temperature, which is followed by a slight decrease in TC with x. A linear decrease in magnetostriction of |λ| − λ| at room temperature with x was also observed from 1530 × 10−6 for x=0 to 36×10−6 for x=0.3. The saturation magnetization σs exhibits a complex concentration dependence in the Tb0.27Dy0.73(Fe)1 − xAlx)2 system: in the range x < 0.5, σs increases linearly with x and, for x = 0.5–0.6, σs decreases and then increases again. An enhancement of the magnetic ‘hardness’ in this system was also observed at low temperature.  相似文献   

15.
The electrical conductivity (σ), Seebeck coefficient (S), and power factor (σS2) of perovskite-type LaFeO3, La1−xSrxFeO3 [0.1 ≤ x ≤ 0.4] and LaFe1−yNiyO3 [0.1 ≤ y ≤ 0.6] were investigated in the temperature range of 300–1100 K to explore their possibility as thermoelectric materials. The electrical conductivity of LaFeO3 showed semiconducting behavior, and its Seebeck coefficient changed from positive to negative around 650 K with increasing temperature. The electrical conductivity of LaFeO3 increased with the substitutions of Sr and Ni atoms, while its Seebeck coefficient decreased. The Seebeck coefficient of La1−xSrxFeO3 was positive, whereas that of LaFe1−yNiyO3 changed from positive to negative with increasing Ni content. The substitutions of Sr and Ni were effective in increasing the power factor of LaFeO3; 0.0053 × 10−4 Wm−1 K−2 for LaFeO3 (1050 K), 1.1 × 10−4 Wm−1 K−2 for La1−xSrxFeO3 (x = 0.1 at 1100 K) and 0.63 × 10−4 Wm−1 K−2 for LaFe1−yNiyO3 (y = 0.1 at 1100 K).  相似文献   

16.
Lithium ion conductors, Li3−2x(Sc1−xZrx)2(PO4)3 (0 x 0.3), were prepared by a solid-state reaction. TG–DTA analysis indicated no phase transition in the samples with x superior to 0.05. X-ray powder diffraction analysis of these samples clearly showed the stabilization of a superionic conduction phase at room temperature with an orthorhombic system Pbcn. The highest conductivity was observed for the sample with x=0.05, and ascribed to the stabilization of the superionic conduction phase and the introduction of vacancies on the Li+ sites by substituting Zr4+ for Sc3.  相似文献   

17.
A new compound CePt2+xSb2−y (x = 0.125, y = 0.25) was synthesized by arc-melting of the elements. The chemical and structural characterizations were carried out at room temperature on as-cast samples using X-ray diffractometry, metallographic analysis and EDS-microanalysis. According to the results of X-ray single crystal diffraction this antimonide crystallizes in I4cm space group (no. 108), Z = 32, ρ = 12.19 Mg/m3, μ = 89.05 mm−1 (a = 12.5386(3) Å, c = 21.4692(6) Å (crystal I) and a = 12.5455(2) Å, c = 21.4791(5) Å (crystal II)). The structure and composition were confirmed by powder X-ray diffraction (a = 12.4901(2) Å, c = 21.3620(4) Å) and EDS-microanalysis respectively. Isotypic compounds were observed with La and Pr from X-ray powder diffraction of as-cast alloys at room temperature (a = 12.6266(4) Å, c = 21.4589(6) Å for LaPt2+xSb2−y and a = 12.5184(5) Å, c = 21.4178(7) Å for PrPt2+xSb2−y). The CePt2+xSb2−y structure is derived from CaBe2Ge2 (a = 2a0 − 2b0, b = 2a0 + 2b0, c = 2c0) and comprises a new atomic arrangement with both vacancy on 4(b) pyramidal site and substitution of antimony atoms (X) by platinum (B) in the B–XX–B layers (referring to the subcell structure) forming two B––1/2B1/2XX–3/4B and two X–BB–X layers per cell. The structure of CePt2+xSb2−y is compared with those reported before for URh1.6As1.9 and CeNi1.91As1.94.  相似文献   

18.
The HfFe6Ge6-type YbMn6Ge6−xGax solid solution (0.07≤x≤0.72) has been studied by X-ray diffraction, microprobe analysis and powder magnetization measurements. All the compounds order antiferromagnetically between TN=481 K for x=0.07 and TN=349 K for x=0.72 and display more or less pronounced spontaneous magnetization at lower temperature. The corresponding Curie points increase from 40 K for x=0.07 to 319 K for x=0.72. The maximum magnetization values of the Ga-rich compounds (M≈5 μB/f.u. at 6 K) is compatible with a ferrimagnetic order of the Mn and Yb sublattices whereas the smaller values measured in the Ga-poor compounds suggest the stabilization of non-colinear magnetic structures. All the studied compounds are characterized by rather large coercive fields at low temperature (4.0≤Hc≤8.2 kOe).  相似文献   

19.
The solid solution limit of Pb1−xSrxTiO3 was determined in the composition range of 0≤x≤1.0 at room temperature (RT). The phases were isolated and indexed in a tetragonal system with x<0.5 and in a cubic one with x≥0.5. The cell parameters of Pb1−xSrxTiO3 continuously, but nonlinearly, change with solubility x. The intrinsic thermal expansions of the solid solution compounds Pb1−xSrxTiO3 (x=0, 0.15, 0.20, 0.50, 0.90, 1.0) were obtained in the temperature range from RT to 1173 K with high-temperature X-ray powder diffraction. Negative thermal expansion coefficients of Pb1−xSrxTiO3 (x=0, 0.15, 0.20) were found below the Curie points. The thermal expansions of these titanate ceramics were highly correlated with the solubility in the solid solution Pb1−xSrxTiO3.  相似文献   

20.
Magnetic and thermal expansion measurements have been carried out on the polycrystalline Sm(Mn1−xCrx)2Ge2 samples to see how the antiferromagnetie (AFMII) region in SmMn2Ge2 is affected by Cr substitution. It is found that the antiferromagnetic region disappears for samples with less than 2 at.% of Cr. Sharp changes in the thermal expansivity (Δl/l) at FMI–AFMII and AFMII–FMII transitions are observed, indicating first order transitions. The decrease in relative thermal expansivity at the two transitions with the increase of Cr concentration is related to the decrease in the stability and the temperature-range of the AFMII phase observed in magnetization measurements. A spin reorientation transition (TSR) has been observed for x=0, at 148 K. It is found that the TSR increases with the increase of Cr concentration. A magnetic phase diagram as a function of Cr concentration in Sm(Mn1−xCrx)2Ge2 has been constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号