首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Cheese produced from fresh, stored or heat pretreated (65°C for 15 s) milk subjected to pasteurisation (72°C or 77°C for 15 s) was studied for chemical characteristics and proteolysis after 4 and 21 days of storage. Antioxidant activity was higher in cheese from fresh milk than in cheese from stored and heat pretreated milk. Malondialdehyde content as an index of lipid oxidation increased in cheese made with pretreated and preserved milk than in cheese made with fresh milk. Antioxidant activity and lipid oxidation were not significantly affected by pasteurisation temperature. Proteolysis increased during cheese maturation regardless of milk heat treatments.  相似文献   

2.
The objectives were to reduce bitterness in reduced-fat Cheddar cheese made with an exopolysaccharide (EPS)-producing culture and study relationships among ultra-filtration (UF), residual chymosin activity (RCA), and cheese bitterness. In previous studies, EPS-producing cultures improved the textural, melting, and viscoelastic properties of reduced-fat Cheddar cheese. However, the EPS-positive cheese developed bitterness after 2 to 3 mo of ripening due to increased RCA. We hypothesized that the reduced amount of chymosin needed to coagulate UF milk might result in reduced RCA and bitterness in cheese. Reduced-fat Cheddar cheeses were manufactured with EPS-producing and nonproducing cultures using skim milk or UF milk (1.2×) adjusted to a casein:fat ratio of 1.35. The EPS-producing culture increased moisture and RCA in reduced-fat Cheddar cheese. Lower RCA was found in cheese made from UF milk compared with that in cheese made from control milk. Ultrafiltration at a low concentration rate (1.2×) produced EPS-positive, reduced-fat cheese with similar RCA to that in the EPS-negative cheese. Slower proteolysis was observed in UF cheeses compared with non-UF cheeses. Panelists reported that UF EPS-positive cheese was less bitter than EPS-positive cheese made from control milk. This study showed that UF at a low concentration factor (1.2×) could successfully reduce bitterness in cheese containing a high moisture level. Because this technology reduced the RCA level (per g of protein) to a level similar to that in the control cheeses, the contribution of chymosin to cheese proteolysis would be similar in both cheeses.  相似文献   

3.
The texture and microstructure of white-brined cheeses similar to urfa (a traditional Turkish cheese) were studied. One batch of cheeses was made in the traditional manner and one batch was made from ultrafiltered (UF) milk. Samples from each batch were either ripened in brine after production or scalded in whey for 3 min at 90°C prior to ripening. The results showed only marginal differences in the ripening profiles of both batches of unscalded cheeses, but scalding slowed down the extent of proteolysis in both batches. The scalded cheeses had a firmer texture than the unscalded ones, and the unscalded UF cheese had a more 'springy' body than the unscalded traditional cheese. Overall, scalding resulted in a more homogeneous structure, but the unscalded UF cheese had a close texture that resembled the scalded samples. It was concluded that, with respect to texture and structure, cheeses made with UF milk do not need to be scalded after production.  相似文献   

4.
Rennet induced coagulation of ultrafiltrated (UF) skim milk (19.8%, w/w casein) at pH 5.8 was studied and compared with coagulation of unconcentrated skim milk of the same pH. At the same rennet concentration (0.010 International Milk Clotting Units g−1), coagulation occurred at a slower rate in UF skim milk but started at a lower degree of κ-casein hydrolysis compared with the unconcentrated skim milk. Confocal laser scanning micrographs revealed that large aggregates developed in the unconcentrated skim milk during renneting. Following extensive microsyneresis the protein strands were shorter and thinner in gels from UF skim milk. Moreover, during storage up to 60 days (13 °C), the microstructure and the size of the protein strands of the UF gel changed only slightly. Hoelter–Foltmann plots suggested that the coagulation rate was reduced in the UF skim milk due to a high zero shear viscosity of the concentrate compared with the unconcentrated skim milk.  相似文献   

5.
《International Dairy Journal》2005,15(6-9):941-955
Pizza cheese was manufactured from two types of Ultrafiltration (UF)-fortified milks: high solids (UFHS; 15.2% TS) and medium solids (UFMS; 13.5%). Cheese milks were obtained by blending cold processed UF retentate with partially skimmed milk and UF (skim milk) retentate. Cheese functionality was assessed using oscillatory rheology and by baking on a pizza. Gels made from UF-fortified milks had similar clotting times and they clotted faster than control milk. Shear stress values of gels from UF-fortified milks were higher than control. Fat recoveries in the cheeses increased in the order UFHS<control<UFMS. Nitrogen recoveries were lower in control than UF-fortified cheeses. During heating loss tangent curves shifted higher during the first month of ripening and the temperature for the maximum loss tangent decreased. Crossover temperature also decreased during ripening. Trichloroacetic acid-soluble nitrogen levels were similar in all cheeses. Standardization of cheese milk with cold UF retentates increased yield without adversely affecting functionality.  相似文献   

6.
The effect of the production method on the proteolysis and lipolysis in White cheese was investigated during 3 months of storage. Two types of White cheese were manufactured with different production methods: (i) the traditional, applying mild heat treatment to milk (65 °C/5 min) and (ii) the industrial, using milk heat‐treated at a high temperature (75 °C/5 min) and starter culture. Lower moisture, higher water‐soluble N, lower trichloroacetic acid‐soluble N and higher free fatty acids levels were found in the cheese produced by the traditional method compared with the cheese produced using the industrial method. The amount of 2,4,6‐trinitrobenzenesulphonic acid‐reactive free amino groups was not significantly different between the cheeses.  相似文献   

7.
Fortification of cheesemilk with membrane retentates is often practiced by cheesemakers to increase yield. However, the higher casein (CN) content can alter coagulation characteristics, which may affect cheese yield and quality. The objective of this study was to evaluate the effect of using ultrafiltration (UF) retentates that were processed at low temperatures on the properties of Swiss cheese. Because of the faster clotting observed with fortified milks, we also investigated the effects of altering the coagulation conditions by reducing the renneting temperature (from 32.2 to 28.3°C) and allowing a longer renneting time before cutting (i.e., giving an extra 5 min). Milks with elevated total solids (TS; ∼13.4%) were made by blending whole milk retentates (26.5% TS, 7.7% CN, 11.5% fat) obtained by cold (<7°C) UF with part skim milk (11.4% TS, 2.5% CN, 2.6% fat) to obtain milk with CN:fat ratio of approximately 0.87. Control cheeses were made from part-skim milk (11.5% TS, 2.5% CN, 2.8% fat). Three types of UF fortified cheeses were manufactured by altering the renneting temperature and renneting time: high renneting temperature = 32.2°C (UFHT), low renneting temperature = 28.3°C (UFLT), and a low renneting temperature (28.3°C) plus longer cutting time (+5 min compared to UFLT; UFLTL). Cutting times, as selected by a Wisconsin licensed cheesemaker, were approximately 21, 31, 35, and 32 min for UFHT, UFLT, UFLTL, and control milks, respectively. Storage moduli of gels at cutting were lower for the UFHT and UFLT samples compared with UFLTL or control. Yield stress values of gels from the UF-fortified milks were higher than those of control milks, and decreasing the renneting temperature reduced the yield stress values. Increasing the cutting time for the gels made from the UF-fortified milks resulted in an increase in yield stress values. Yield strain values were significantly lower in gels made from control or UFLTL milks compared with gels made from UFHT or UFLT milks. Cheese composition did not differ except for fat content, which was lower in the control compared with the UF-fortified cheeses. No residual lactose or galactose remained in the cheeses after 2 mo of ripening. Fat recoveries were similar in control, UFHT, and UFLTL but lower in UFLT cheeses. Significantly higher N recoveries were obtained in the UF-fortified cheeses compared with control cheese. Because of higher fat and CN contents, cheese yield was significantly higher in UF-fortified cheeses (∼11.0 to 11.2%) compared with control cheese (∼8.5%). A significant reduction was observed in volume of whey produced from cheese made from UF-fortified milk and in these wheys, the protein was a higher proportion of the solids. During ripening, the pH values and 12% trichloroacetic acid-soluble N levels were similar for all cheeses. No differences were observed in the sensory properties of the cheeses. The use of UF retentates improved cheese yield with no significant effect on ripening or sensory quality. The faster coagulation and gel firming can be decreased by altering the renneting conditions.  相似文献   

8.
The effect of microfiltration (MF) on proteolysis, hardness, and flavor of Cheddar cheese during 6 mo of aging was determined. Raw skim milk was microfiltered two-fold in two cheese making trials. In trial 1, four vats of cheese were made in 1 d using unconcentrated milk (1X), 1.26X, 1.51X, and 1.82X concentration factors (CF). Casein-(CN)-to-fat ratio was constant among treatments. Proteolysis during cheese aging decreased with increasing CF due to either limitation of substrate availability for chymosin due to low moisture in the nonfat substance (MNFS), inhibition of chymosin activity by high molecular weight milk serum proteins, such as alpha2-macroglobulin, retained in the cheese or low residual chymosin in the cheese. Hardness of fresh cheese increased, and cheese flavor intensity decreased with increasing CF. In trial 2, the 1X and 1.8X CF were compared directly. Changes made in the cheese making procedure for the 1.8X CF (more chymosin and less cooking) increased the MNFS and made proteolysis during aging more comparable for the 1X and 1.8X cheeses. The significant difference in cheese hardness due to CF in trial 1 was eliminated in trial 2. In a triangle test, panelists could not differentiate between the 1X and 1.8X cheeses. Therefore, increasing chymosin and making the composition of the two cheeses more similar allowed production of aged Cheddar cheese from milk concentrated up to 1.8X by MF that was not perceived as different from aged Cheddar cheese produced without MF.  相似文献   

9.
Ras cheese was made by means of the traditional method from cow's milk and milk concentrated by ultrafiltration to concentration factors 2 and 5, and from diafiltered x5 retentate. The fresh cheese yield was determined and cheese was ripened for 3 months, changes in moisture, fat, nitrogen fractions, pH, acidity and ripening indices were followed periodically during the ripening period. The organoleptic properties of the cheese were also assessed. UF Milk retentate gave higher cheese yield depending on concentration factor. UF Ras cheese from high concentrated retentate was characterized by slow protein degradation, flavour development and hard texture. The composition and properties of UF Ras cheese from x2 retentate were close to that of traditional Ras cheese.  相似文献   

10.
Individual cow samples were collected and preserved with potassium dichromate. Somatic cells counts were determined. Tyrosine value was used as an index of proteolysis. Sixty-six samples ranged in somatic cell count from < 50,000 to > 2,000,000/ml. Initial milk tyrosine values and tyrosine values for milks incubated for 24 h at 37°C showed proteolytic activity increased with increasing somatic cell count. The increase in proteolysis in preserved milk refrigerated for 72 h at 6.7°C was over 1.5 times greater in milks with > 1,000,000 cells/ml than in milks with < 60,000 cells/ml. When preserved milks were laboratory pasteurized, cooled, and stored at 6.7°C for 14 d, some proteolytic activity was detected in milks at all concentrations of somatic cells, and proteolysis increased as somatic cell counts increased. Laboratory-pasteurized samples of milk with various somatic cell counts were also incubated at 30°C for 3 and 6 h to duplicate the proteolysis that could occur during the ripening, coagulation, cutting, and cooking steps of cheese making. Again, the greatest increases in tyrosine were in milks with high somatic cell count. Protease(s) associated with elevated somatic cell counts will damage raw milk quality upon storage, pasteurized fluid milk over shelf-life, and milk during cheese making.  相似文献   

11.
The texture of traditional and ultrafiltered (UF) teleme cheeses was evaluated using instrumental and sensory texture profile analysis. The UF teleme was made from unheated or heat treated (75°C for 5 minutes) UF milk concentrate. Samples were tested after 2 and 4 mo ripening. Instron variables did not discriminate between the three teleme types but sensory attributes, assessed by a panel discriminated the samples. Weak correlations were obtained between sensory and mechanical variables. Redundancy ordination analysis indicated that textural behavior of each type teleme cheese was characterized by different attributes. Sensory springiness or brittleness, lumpiness and fat content characterized the majority of traditional teleme samples whereas adhesiveness, pH, water soluble and noncasein nitrogen characterized the heat-treated UF samples.  相似文献   

12.
The effects of renneting temperature (30 °C or 34 °C) on textural properties, proteolysis and yield of white-brined cheese made by simultaneous use of microbial transglutaminase (mTG) and rennet were investigated. Incorporation of mTG resulted in higher yield values for experimental cheeses than for the control cheeses at both renneting temperatures. The total solids contents of the cheeses treated with mTG were remarkably lower than the control cheeses; but the former cheeses had higher protein-in-dry matter levels. The TPA profiles of the cheeses showed that the incorporation of mTG led to modification in the textural properties. The development of proteolysis in the cheeses treated with mTG was slightly slower than the control cheeses at both coagulation temperatures. To conclude, the specific action of mTG on milk proteins could be successfully exploited to modify the textural properties and to increase the yield of white-brined cheese.  相似文献   

13.
This study investigated the effect of centrifugation (9,000 × g, 50°C, flow rate = 1,000 L/h), as well as the incorporation of high-heat-treated (HHT) centrifugate into cheese milk on the composition, texture, and ripening characteristics of Maasdam cheese. Neither centrifugation nor incorporation of HHT centrifugate into cheese milk had a pronounced effect on the compositional parameters of any experimental cheeses, except for moisture and moisture in nonfat substance (MNFS) levels. Incorporation of HHT centrifugate at a rate of 6 to 10% of the total milk weight into centrifuged milk increased the level of denatured whey protein in the cheese milk and also increased the level of MNFS in the resultant cheese compared with cheeses made from centrifuged milk and control cheeses; moreover, cheese made from centrifuged milk had ~3% higher moisture content on average than control cheeses. Centrifugation of cheese milk reduced the somatic cell count by ~95% relative to the somatic cell count in raw milk. Neither centrifugation nor incorporation of HHT centrifugate into cheese milk had a significant effect on age-related changes in pH, lactate content, and levels of primary and secondary proteolysis. However, the value for hardness was significantly lower for cheeses made from milk containing HHT centrifugate than for other experimental cheese types. Overall, centrifugation appeared to have little effect on composition, texture, and ripening characteristics of Maasdam cheese. However, care should be taken when incorporating HHT centrifugate into cheese milk, because such practices can influence the level of moisture, MNFS, and texture (particularly hardness) of resultant cheeses. Such differences may have the potential to influence subsequent eye development characteristic, although no definitive trends were observed in the present study and further research on this is recommended.  相似文献   

14.
The objective of this study was to compare the effects of vacuum-condensed (CM) and ultrafiltered (UF) milk on some compositional and functional properties of Cheddar cheese. Five treatments were designed to have 2 levels of concentration (4.5 and 6.0% protein) from vacuum-condensed milk (CM1 and CM2) and ultrafiltered milk (UF1 and UF2) along with a 3.2% protein control. The samples were analyzed for fat, protein, ash, calcium, and salt contents at 1 wk. Moisture content, soluble protein, meltability, sodium dodecyl sulfate-PAGE, and counts of lactic acid bacteria and nonstarter lactic acid bacteria were performed on samples at 1, 18, and 30 wk. At 1 wk, the moisture content ranged from 39.2 (control) to 36.5% (UF2). Fat content ranged from 31.5 to 32.4% with no significant differences among treatments, and salt content ranged from 1.38 to 1.83% with significant differences. Calcium content was higher in UF cheeses than in CM cheeses followed by control, and it increased with protein content in cheese milk. Ultrafiltered milk produced cheese with higher protein content than CM milk. The soluble protein content of all cheeses increased during 30 wk of ripening. Condensed milk cheeses exhibited a higher level of proteolysis than UF cheeses. Sodium dodecyl sulfate-PAGE showed retarded proteolysis with increase in level of concentration. The breakdown of alphas1- casein and alphas1-I-casein fractions was highest in the control and decreased with increase in protein content of cheese milk, with UF2 being the lowest. There was no significant degradation of beta-casein. Overall increase in proteolytic products was the highest in control, and it decreased with increase in protein content of cheese milk. No significant differences in the counts of lactic starters or nonstarter lactic acid bacteria were observed. Extent as well as method of concentration influenced the melting characteristics of the cheeses. Melting was greatest in the control cheeses and least in cheese made from condensed milk and decreased with increasing level of milk protein concentration. Vacuum condensing and ultrafiltration resulted in Cheddar cheeses of distinctly different quality. Although both methods have their advantages and disadvantages, the selection of the right method would depend upon the objective of the manufacturer and intended use of the cheese.  相似文献   

15.
In this study, a cheese analogue was produced based on UF white‐brined cheese by replacing the dairy fat with sunflower oil and cooking at different temperatures and times. Hardness, adhesiveness, meltability and oiling‐off were used to evaluate the suitability of the final product. Partial replacement of dairy cream with sunflower oil led to an increase in the adhesiveness, oiling‐off and spreadability while decreasing the hardness of the cheese. Optimum operating conditions were found to be 85 °C for the cooking temperature, 14.12 min for the cooking time and 27.14% w/w for the sunflower oil content.  相似文献   

16.
An attempt has been carried out to accelerate Ras cheese ripening by pre-treatment of cheese milk with β-galactosidase. Milk was treated with a β-galactosidase enzyme preparation, namely lactozym (1 ml/kg milk), at 33°C for 1 h or at 4°C for 18 h and used for Ras cheese making. Flavour intensity, formation of soluble nitrogen compounds, free amino acids and liberation of free fatty acids were enhanced in cheese made from β-galactosidase treated milk. In addition, the ripening period was reduced to 2 months compared with 4 months required for control cheese. Treatment of cheese milk with β-galactosidase at 4°C or 33°C showed a similar effect on the properties of cheese.  相似文献   

17.
More than 200 isolates were obtained from 15 Egyptian traditional dairy products (Domiatti cheese, Ras cheese and Rayeb milk) collected from local markets of Alexandria, Tanta and Kafr El-Sheikh. Examination with optical microscope of these dairy samples allowed to classify 92 bacilli, 64 of which were identified as lactobacilli. The proteolytic activity of lactobacilli isolates was tested on skim milk agar. Eight isolates showing a high proteolytic activity were further tested on UHT skim milk. The strain showing the highest proteolytic activity was purified and identified as Lactobacillus fermentum IFO 3656. The specific proteolytic activity of this strain and the factors affecting it (pH, temperature and presence of inhibitors) were studied. The proteolysis targeted mainly caseins (73% of whole casein), especially β-casein (85%). Smaller portions of whey proteins were proteolyzed (20%) essentially β-lactoglobulin. The proteolysis process gave rise to medium-sized peptide populations. The optimum conditions for the proteolysis activity of the studied strains were pH 6.5 and 37 °C. Proteolytic activities were very slightly affected by the increase of the temperature to 42 °C or the pH to 8.2. The protease system of Lactobacillus fermentum IFO 3956 is most probably composed from a high amount of metalloproteases and small amount of cysteine and serine proteases.  相似文献   

18.
A Tunisian semihard Gouda‐type cheese made from milk kept at 4 °C for 24, 48, 72 and 96 h was monitored during 45 days of ripening. The effect of milk refrigeration on the evolution of physicochemical parameters in relation to the quantitative variation of the microbial population during ripening of Gouda‐type cheese was investigated. Microbiological and physicochemical analyses were performed on raw milk and cheese samples after curding, 2, 9, 16, 23, 30, 37 and 45 days of ripening time. The raw milk kept under refrigeration at 4 °C for 96 h showed the highest microbial count and proteolysis level. The duration of storage significantly reduced the cheese yield as a result of important solubilisation casein in proteoses‐peptones. Results of different nitrogenous fractions by Kjeldahl method showed enzymatic hydrolysis products of casein whose intensity depended on the maturing stage as well as the refrigeration time. Besides the evident action of the plasmin, original milk protease, on the hydrolysis of casein in soluble fractions, the proteolysis of cheese caseins is also initiated by proteolytic action of the chymosin and extracellular heat‐resistant proteases notably produced by the same psychrotrophic microflora. Lactic acid bacteria starters that constitute the dominant microflora of this type of cheese are also considered as aroma precursors.  相似文献   

19.
Pasteurized (65°C, 30 min), pressurized (400 MPa, 22°C, 15 min) and pasteurized–pressurized milks were used for reduced-fat (approximately 32% of total solids) cheese production. Pressurization of milk increased the yield of reduced-fat cheese through an enhanced β-lactoglobulin and moisture retention. In addition, pressurisation of pasteurized skim milk improved its coagulation properties. The cheeses made from pasteurized–pressurized and pressurized milks showed a faster rate of protein breakdown than the cheese made from pasteurized milk, that might be mainly attributed to a higher level of residual rennet. Hardness of the experimental cheeses, as determined by both the sensory panel and instrumental analyses, decreased as the moisture content and proteolytic degradation of the cheese increased (pasteurized>pressurized>pasteurized–pressurized). In general terms, pressurization of reduced-fat milk prior to cheese-making improved cheese texture and thus accounted for a higher overall acceptability, except for the cheeses made from pasteurized–pressurized milk at 60 d of ripening, whose acceptability score was adversely affected by bitterness.  相似文献   

20.
In this study, ultrafiltered (UF) Iranian white cheese made with adjunct cultures including six Lactobacillus isolates (Lactobacillus brevis, L. casei and L. plantarum) from traditional Iranian Motal cheese. The peptide extract (<5 kDa) of cheese samples were assessed for angiotensin-converting enzyme (ACE)-inhibitory activity during ripening (5 °C). Among the strains used, L. brevis KX572382 (M8) was selected because of the greater increase in (ACE)-inhibitory activity in the cheese (P < 0.05). The highest activity of M8 extract was observed on the 28th (71.72%) day of ripening (P < 0.05). Proteolytic activity assessment and RP-HPLC peptide profile of M8 water-soluble extracts (WSEs) indicated the effect of M8 on further protein degradation due to secondary proteolysis. A total of 7 different peptide sequences, previously known in the literature for their ACE-inhibitory activity, were tentatively identified by LC/ESI-MS in 28-day M8 peptide extract. Although the effect of M8 on pH and the proteolysis development in cheese was significant, no adverse effect was observed on the sensory properties. In conclusion, M8 strain can enhance the functional properties of Iranian UF white cheese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号